Java Machine Learning Software

View 443 business solutions

Browse free open source Java Machine Learning Software and projects below. Use the toggles on the left to filter open source Java Machine Learning Software by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • AI-powered service management for IT and enterprise teams Icon
    AI-powered service management for IT and enterprise teams

    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity. Maximize operational efficiency with refreshingly simple, AI-powered Freshservice.
    Try it Free
  • 1
    Weka

    Weka

    Machine learning software to solve data mining problems

    Weka is a collection of machine learning algorithms for solving real-world data mining problems. It is written in Java and runs on almost any platform. The algorithms can either be applied directly to a dataset or called from your own Java code.
    Leader badge
    Downloads: 13,302 This Week
    Last Update:
    See Project
  • 2
    MIT Deep Learning Book

    MIT Deep Learning Book

    MIT Deep Learning Book in PDF format by Ian Goodfellow

    The Deep Learning textbook is a resource intended to help students and practitioners enter the field of machine learning in general and deep learning in particular. The online version of the book is now complete and will remain available online for free. MIT Deep Learning Book in PDF format (complete and parts) by Ian Goodfellow, Yoshua Bengio and Aaron Courville. An MIT Press book Ian Goodfellow and Yoshua Bengio and Aaron Courville. Written by three experts in the field, Deep Learning is the only comprehensive book on the subject. This is not available as PDF download. So, I have taken the prints of the HTML content and bound them into a flawless PDF version of the book, as suggested by the website itself. Printing seems to work best printing directly from the browser, using Chrome. Other browsers do not work as well.
    Downloads: 18 This Week
    Last Update:
    See Project
  • 3
    Java Neural Network Framework Neuroph
    Neuroph is lightweight Java Neural Network Framework which can be used to develop common neural network architectures. Small number of basic classes which correspond to basic NN concepts, and GUI editor makes it easy to learn and use.
    Leader badge
    Downloads: 75 This Week
    Last Update:
    See Project
  • 4
    UnBBayes

    UnBBayes

    Framework & GUI for Bayes Nets and other probabilistic models.

    UnBBayes is a probabilistic network framework written in Java. It has both a GUI and an API with inference, sampling, learning and evaluation. It supports Bayesian networks, influence diagrams, MSBN, OOBN, HBN, MEBN/PR-OWL, PRM, structure, parameter and incremental learning. Please, visit our wiki (https://sourceforge.net/p/unbbayes/wiki/Home/) for more information. Check out the license section (https://sourceforge.net/p/unbbayes/wiki/License/) for our licensing policy.
    Downloads: 31 This Week
    Last Update:
    See Project
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 5
    Smile

    Smile

    Statistical machine intelligence and learning engine

    Smile is a fast and comprehensive machine learning engine. With advanced data structures and algorithms, Smile delivers the state-of-art performance. Compared to this third-party benchmark, Smile outperforms R, Python, Spark, H2O, xgboost significantly. Smile is a couple of times faster than the closest competitor. The memory usage is also very efficient. If we can train advanced machine learning models on a PC, why buy a cluster? Write applications quickly in Java, Scala, or any JVM languages. Data scientists and developers can speak the same language now! Smile provides hundreds advanced algorithms with clean interface. Scala API also offers high-level operators that make it easy to build machine learning apps. And you can use it interactively from the shell, embedded in Scala. The most complete machine learning engine. Smile covers every aspect of machine learning.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 6
    GROBID

    GROBID

    A machine learning software for extracting information

    GROBID is a machine learning library for extracting, parsing, and re-structuring raw documents such as PDF into structured XML/TEI encoded documents with a particular focus on technical and scientific publications. First developments started in 2008 as a hobby. In 2011 the tool has been made available in open source. Work on GROBID has been steady as a side project since the beginning and is expected to continue as such. Header extraction and parsing from article in PDF format. The extraction here covers the usual bibliographical information (e.g. title, abstract, authors, affiliations, keywords, etc.). References extraction and parsing from articles in PDF format, around .87 F1-score against on an independent PubMed Central set of 1943 PDF containing 90,125 references, and around .89 on a similar bioRxiv set of 2000 PDF (using the Deep Learning citation model). All the usual publication metadata are covered (including DOI, PMID, etc.).
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    Oryx

    Oryx

    Lambda architecture on Apache Spark, Apache Kafka for real-time

    Oryx 2 is a realization of the lambda architecture built on Apache Spark and Apache Kafka, but with specialization for real-time large-scale machine learning. It is a framework for building applications but also includes packaged, end-to-end applications for collaborative filtering, classification, regression and clustering. The application is written in Java, using Apache Spark, Hadoop, Tomcat, Kafka, Zookeeper and more. Configuration uses a single Typesafe Config config file, wherein applications configure an entire deployment of the system. This includes implementations of key interface classes which implement the batch, speed, and serving logic. Applications package and deploy their implementations with each instance of the layer binaries. Each of these is a runnable Java .jar which starts all necessary services.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    Clustering Variation looks for a good subset of attributes in order to improve the classification accuracy of supervised learning techniques in classification problems with a huge number of attributes involved. It first creates a ranking of attributes based on the Variation value, then divide into two groups, last using Verification method to select the best group.
    Downloads: 16 This Week
    Last Update:
    See Project
  • 9
    This project contains weka packages of neural networks algorithms implementations like Learning Vector Quantizer (LVQ) and Self-organizing Maps (SOM). For more information about weka, please visit http://www.cs.waikato.ac.nz/~ml/weka/
    Leader badge
    Downloads: 45 This Week
    Last Update:
    See Project
  • Secure User Management, Made Simple | Frontegg Icon
    Secure User Management, Made Simple | Frontegg

    Get 7,500 MAUs, 50 tenants, and 5 SSOs free – integrated into your app with just a few lines of code.

    Frontegg powers modern businesses with a user management platform that’s fast to deploy and built to scale. Embed SSO, multi-tenancy, and a customer-facing admin portal using robust SDKs and APIs – no complex setup required. Designed for the Product-Led Growth era, it simplifies setup, secures your users, and frees your team to innovate. From startups to enterprises, Frontegg delivers enterprise-grade tools at zero cost to start. Kick off today.
    Start for Free
  • 10
    MEKA

    MEKA

    A Multi-label Extension to Weka

    Multi-label classifiers and evaluation procedures using the Weka machine learning framework.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 11
    MODLEM

    MODLEM

    rule-based, WEKA compatible, Machine Learning algorithm

    This project is a WEKA (Waikato Environment for Knowledge Analysis) compatible implementation of MODLEM - a Machine Learning algorithm which induces minimum set of rules. These rules can be adopted as a classifier (in terms of ML). It is a sequential covering algorithm, which was invented to cope with numeric data without discretization. Actually the nominal and numeric attributes are treated in the same way: attribute's space is being searched to find the best rule condition during rule induction. In result numeric attribute's conditions are more precise and closely describe the class. This algorithm contains some aspects of Rough Set Theory: the class definition can be described accordingly to its lower or upper approximation. For more information, see: Stefanowski, Jerzy. The rough set based rule induction technique for classification problems. In: Proc. 6th European Congress on Intelligent Techniques and Soft Computing, vol. 1. Aachen, 1998. s. 109-113.
    Downloads: 14 This Week
    Last Update:
    See Project
  • 12

    sgmweka

    Weka wrapper for the SGM toolkit for text classification and modeling.

    Weka wrapper for the SGM toolkit for text classification and modeling. Provides Sparse Generative Models for scalable and accurate text classification and modeling for use in high-speed and large-scale text mining. Has lower time complexity of classification than comparable software due to inference based on sparse model representation and use of an inverted index. The provided .zip file is in the Weka package format, giving access to text classification. Other functions are usable through either Java command-line commands or class inclusion into Java projects.
    Leader badge
    Downloads: 15 This Week
    Last Update:
    See Project
  • 13
    Neurology Diagnosis System
    “Neurology Diagnosis System” is a web-based expert system for diagnosis of neurologic disorders or the disorders of our nervous system. Health assistants in remote areas can use the system to diagnose neurologic patients in the absence of neurolo
    Downloads: 8 This Week
    Last Update:
    See Project
  • 14
    Neuroph OCR - Handwriting Recognition
    Neuroph OCR - Handwriting Recognition is developed to recognize hand written letter and characters. It's engine derived's from the Java Neural Network Framework - Neuroph and as such it can be used as a standalone project or a Neuroph plug in.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    jMIR

    jMIR

    Music research software

    jMIR is an open-source software suite implemented in Java for use in music information retrieval (MIR) research. It can be used to study music in the form of audio recordings, symbolic encodings and lyrical transcriptions, and can also mine cultural information from the Internet. It also includes tools for managing and profiling large music collections and for checking audio for production errors. jMIR includes software for extracting features, applying machine learning algorithms, applying heuristic error error checkers, mining metadata and analyzing metadata.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 16
    openModeller is a complete C++ framework for species potential distribution modelling. The project also includes a graphical user interface, a web service interface and an API for Python.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 17
    Flamingo Project

    Flamingo Project

    Workflow Designer, Hive Editor, Pig Editor, File System Browser

    Flamingo is a open-source Big Data Platform that combine a Ajax Rich Web Interface + Workflow Engine + Workflow Designer + MapReduce + Hive Editor + Pig Editor. 1. Easy Tool for big data 2. Use comfortable in Hadoop EcoSystem projects 3. Based GPL V3 License Supporting Pig IDE, Hive IDE, HDFS Browser, Scheduler, Hadoop Job Monitoring, Workflow Engine, Workflow Designer, MapReduce.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    ADAMS

    ADAMS

    ADAMS is a workflow engine for building complex knowledge workflows.

    ADAMS is a flexible workflow engine aimed at quickly building and maintaining data-driven, reactive workflows, easily integrated into business processes. Instead of placing operators on a canvas and manually connecting them, a tree structure and flow control operators determine how data is processed (sequentially/parallel). This allows rapid development and easy maintenance of large workflows, with hundreds or thousands of operators. Operators include machine learning (WEKA, MOA, MEKA) and image processing (ImageJ, JAI, BoofCV, LIRE and Gnuplot). R available using Rserve. WEKA webservice allows other frameworks to use WEKA models. Fast prototyping with Groovy and Jython. Read/write support for various databases and spreadsheet applications.
    Leader badge
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19

    Chordalysis

    Log-linear analysis (data modelling) for high-dimensional data

    ===== Project moved to https://github.com/fpetitjean/Chordalysis ===== Log-linear analysis is the statistical method used to capture multi-way relationships between variables. However, due to its exponential nature, previous approaches did not allow scale-up to more than a dozen variables. We present here Chordalysis, a log-linear analysis method for big data. Chordalysis exploits recent discoveries in graph theory by representing complex models as compositions of triangular structures, also known as chordal graphs. Chordalysis makes it possible to discover the structure of datasets with thousands of variables on a standard desktop computer. Associated papers at ICDM 2013, ICDM 2014 and SDM 2015 can be found at http://www.francois-petitjean.com/Research/ YourKit is supporting Chordalysis open source project with its full-featured Java Profiler. YourKit is the creator of innovative and intelligent tools for profiling Java and .NET applications. http://www.yourkit.com
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    Open Pandora's Box

    Open Pandora's Box

    Pandora is an artificial intelligent web based bot

    Pandora is an artificial intelligent web based bot written in Java. Pandora is a component based AI architecture including, database memory, XML, voice, voice rec, chat, IRC, HTTP, Wiktionary, Freebase, consciousness, language, GUI, applet, web, jsp, Android
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    A.I. Stock Trends With WEKA & TA-Lib

    A.I. Stock Trends With WEKA & TA-Lib

    A Repository Of The Java Programs Presented in the Videos.

    This is the open/public source code repository for the Java programs shown in the YouTube videos - A.I. Stock Trends With WEKA, TA-Lib and more https://www.youtube.com/channel/UCPxmgFZDS7F06UBBxH5b4mg
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    EpochX
    EpochX is an open source genetic programming framework, specifically for analysing the properties of evolutionary automatic programming. It supports 3 popular representations - Strongly-Typed GP, Context-Free Grammar GP and Grammatical Evolution.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    Program to performing the complete cycle of neural networks analysis: preparing data, choosing neural network (CasCor, MP, LogRegression, PNN), learning of network, monitoring learning state, ROC-analysis, optimization of network parameters using GA.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    P53 Cancer Rescue Project, University of California, Irvine , Samuel A. Danziger, Christopher Wassman, Faezeh Salehi Amiri, Roberta Baronio, Linda Hall, Rainer K. Brachmann, G. Wesley Hatfield, Peter Kaiser, Richard H. Lathrop
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.