Open Source Julia Software

Julia Software

Julia Clear Filters

Browse free open source Julia Software and projects below. Use the toggles on the left to filter open source Julia Software by OS, license, language, programming language, and project status.

  • 99.99% Uptime for MySQL and PostgreSQL on Google Cloud Icon
    99.99% Uptime for MySQL and PostgreSQL on Google Cloud

    Enterprise Plus edition delivers sub-second maintenance downtime and 2x read/write performance. Built for critical apps.

    Cloud SQL Enterprise Plus gives you a 99.99% availability SLA with near-zero downtime maintenance—typically under 10 seconds. Get 2x better read/write performance, intelligent data caching, and 35 days of point-in-time recovery. Supports MySQL, PostgreSQL, and SQL Server with built-in vector search for gen AI apps. New customers get $300 in free credit.
    Try Cloud SQL Free
  • Enterprise-grade ITSM, for every business Icon
    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity.

    Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
    Try it Free
  • 1
    AlphaZero.jl

    AlphaZero.jl

    A generic, simple and fast implementation of Deepmind's AlphaZero

    Beyond its much publicized success in attaining superhuman level at games such as Chess and Go, DeepMind's AlphaZero algorithm illustrates a more general methodology of combining learning and search to explore large combinatorial spaces effectively. We believe that this methodology can have exciting applications in many different research areas. Because AlphaZero is resource-hungry, successful open-source implementations (such as Leela Zero) are written in low-level languages (such as C++) and optimized for highly distributed computing environments. This makes them hardly accessible for students, researchers and hackers. Many simple Python implementations can be found on Github, but none of them is able to beat a reasonable baseline on games such as Othello or Connect Four. As an illustration, the benchmark in the README of the most popular of them only features a random baseline, along with a greedy baseline that does not appear to be significantly stronger.
    Downloads: 28 This Week
    Last Update:
    See Project
  • 2
    LinearSolve.jl

    LinearSolve.jl

    High-Performance Unified Interface for Linear Solvers in Julia

    LinearSolve.jl is a unified interface for the linear solving packages of Julia. It interfaces with other packages of the Julia ecosystem to make it easy to test alternative solver packages and pass small types to control algorithm swapping. It also interfaces with the ModelingToolkit.jl world of symbolic modeling to allow for automatically generating high-performance code. Performance is key: the current methods are made to be highly performant on scalar and statically sized small problems, with options for large-scale systems. If you run into any performance issues, please file an issue.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 3
    CUDA.jl

    CUDA.jl

    CUDA programming in Julia

    High-performance GPU programming in a high-level language. JuliaGPU is a GitHub organization created to unify the many packages for programming GPUs in Julia. With its high-level syntax and flexible compiler, Julia is well-positioned to productively program hardware accelerators like GPUs without sacrificing performance. The latest development version of CUDA.jl requires Julia 1.8 or higher. If you are using an older version of Julia, you need to use a previous version of CUDA.jl. This will happen automatically when you install the package using Julia's package manager.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 4
    The Julia Programming Language

    The Julia Programming Language

    High-level, high-performance dynamic language for technical computing

    Julia is a fast, open source high-performance dynamic language for technical computing. It can be used for data visualization and plotting, deep learning, machine learning, scientific computing, parallel computing and so much more. Having a high level syntax, Julia is easy to use for programmers of every level and background. Julia has more than 2,800 community-registered packages including various mathematical libraries, data manipulation tools, and packages for general purpose computing. Libraries from Python, R, C/Fortran, C++, and Java can also be used.
    Downloads: 9 This Week
    Last Update:
    See Project
  • Deploy Apps in Seconds with Cloud Run Icon
    Deploy Apps in Seconds with Cloud Run

    Host and run your applications without the need to manage infrastructure. Scales up from and down to zero automatically.

    Cloud Run is the fastest way to deploy containerized apps. Push your code in Go, Python, Node.js, Java, or any language and Cloud Run builds and deploys it automatically. Get fast autoscaling, pay only when your code runs, and skip the infrastructure headaches. Two million requests free per month. And new customers get $300 in free credit.
    Try Cloud Run Free
  • 5
    UnicodePlots

    UnicodePlots

    Unicode-based scientific plotting for working in the terminal

    Unicode-based scientific plotting for working in the terminal.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 6
    LabPlot

    LabPlot

    Data Visualization and Analysis

    LabPlot is a FREE, open source and cross-platform Data Visualization and Analysis software accessible to everyone.
    Downloads: 44 This Week
    Last Update:
    See Project
  • 7
    DynamicHMC

    DynamicHMC

    Implementation of robust dynamic Hamiltonian Monte Carlo methods

    Implementation of robust dynamic Hamiltonian Monte Carlo methods in Julia. In contrast to frameworks that utilize a directed acyclic graph to build a posterior for a Bayesian model from small components, this package requires that you code a log-density function of the posterior in Julia. Derivatives can be provided manually, or using automatic differentiation. Consequently, this package requires that the user is comfortable with the basics of the theory of Bayesian inference, to the extent of coding a (log) posterior density in Julia. This approach allows the use of standard tools like profiling and benchmarking to optimize its performance.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 8
    QML

    QML

    Build Qt6 QML interfaces for Julia programs

    This package provides an interface to Qt6 QML (and to Qt5 for older versions). It uses the CxxWrap package to expose C++ classes. Current functionality allows interaction between QML and Julia using Observables, JuliaItemModels and function calling. There is also a generic Julia display, as well as specialized integration for image drawing, GR plots and Makie.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 9
    CImGui

    CImGui

    Julia wrapper for cimgui

    This package provides a Julia language wrapper for cimgui: a thin c-api wrapper programmatically generated for the excellent C++ immediate mode gui Dear ImGui. Dear ImGui is mainly for creating content creation tools and visualization / debug tools. You could browse Gallery to get an idea of its use cases.
    Downloads: 5 This Week
    Last Update:
    See Project
  • Cut Data Warehouse Costs up to 54% with BigQuery Icon
    Cut Data Warehouse Costs up to 54% with BigQuery

    Migrate from Snowflake, Databricks, or Redshift with free migration tools. Exabyte scale without the Exabyte price.

    BigQuery delivers up to 54% lower TCO than cloud alternatives. Migrate from legacy or competing warehouses using free BigQuery Migration Service with automated SQL translation. Get serverless scale with no infrastructure to manage, compressed storage, and flexible pricing—pay per query or commit for deeper discounts. New customers get $300 in free credit.
    Try BigQuery Free
  • 10
    CSV

    CSV

    Utility library for working with CSV and other delimited files

    Welcome to CSV.jl! A pure-Julia package for handling delimited text data, be it comma-delimited (csv), tab-delimited (tsv), or otherwise. A fast, flexible delimited file reader/writer for Julia.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 11
    NonlinearSolve.jl

    NonlinearSolve.jl

    High-performance and differentiation-enabled nonlinear solvers

    Fast implementations of root-finding algorithms in Julia that satisfy the SciML common interface. For information on using the package, see the stable documentation. Use the in-development documentation for the version of the documentation that contains the unreleased features. NonlinearSolve.jl is a unified interface for the nonlinear solving packages of Julia. The package includes its own high-performance nonlinear solvers which include the ability to swap out to fast direct and iterative linear solvers, along with the ability to use sparse automatic differentiation for Jacobian construction and Jacobian-vector products. NonlinearSolve.jl interfaces with other packages of the Julia ecosystem to make it easy to test alternative solver packages and pass small types to control algorithm swapping. It also interfaces with the ModelingToolkit.jl world of symbolic modeling to allow for automatically generating high-performance code.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 12
    Pluto.jl

    Pluto.jl

    Simple reactive notebooks for Julia plutojl.org

    We are on a mission to make scientific computing more accessible and fun. Writing a notebook is not just about writing the final document, Pluto empowers the experiments and discoveries that are essential to getting there.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 13
    AbstractAlgebra.jl

    AbstractAlgebra.jl

    Generic abstract algebra functionality in pure Julia

    AbstractAlgebra is a pure Julia package for computational abstract algebra. It grew out of the Nemo project and provides all of the abstract types and generic implementations that Nemo relies on. It was originally developed by William Hart, Tommy Hofmann, Fredrik Johansson and Claus Fieker with contributions from others. Current maintainers are Claus Fieker, Tommy Hofmann and Max Horn.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 14
    Clang.jl

    Clang.jl

    C binding generator and Julia interface to libclang

    This package provides a Julia language wrapper for libclang: the stable, C-exported interface to the LLVM Clang compiler. The libclang API documentation provides background on the functionality available through libclang, and thus through the Julia wrapper. The repository also hosts related tools built on top of libclang functionality.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 15
    CommonMark.jl

    CommonMark.jl

    A CommonMark-compliant parser for Julia

    A CommonMark-compliant parser for Julia.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 16
    GMT.jl

    GMT.jl

    Generic Mapping Tools Library Wrapper for Julia

    The Generic Mapping Tools, GMT, is an open source collection of tools for manipulating geographic and Cartesian data sets (including filtering, trend fitting, gridding, projecting, etc.) and producing PostScript illustrations ranging from simple x–y plots via contour maps to artificially illuminated surfaces and 3D perspective views. This link will take you to an impressive collection of figures made with GMT. The GMT Julia wrapper was designed to work in a way the close as possible to the command line version and yet to provide all the facilities of the Julia language. In this sense, all GMT options are put in a single text string that is passed, plus the data itself when it applies, to the gmt() command. However, we also acknowledge that not every one is comfortable with the GMT syntax. This syntax is needed to accommodate the immense pool of options that let you control all details of a figure but that also makes it harder to read/master.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 17
    GPUArrays

    GPUArrays

    Reusable array functionality for Julia's various GPU backends

    Reusable GPU array functionality for Julia's various GPU backends. This package is the counterpart of Julia's AbstractArray interface, but for GPU array types: It provides functionality and tooling to speed-up development of new GPU array types. This package is not intended for end users! Instead, you should use one of the packages that builds on GPUArrays.jl, such as CUDA.jl, oneAPI.jl, AMDGPU.jl, or Metal.jl.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 18
    ITensors.jl

    ITensors.jl

    A Julia library for efficient tensor computations and tensor network

    ITensors.jl is a high-performance Julia library for tensor network calculations, primarily used in quantum physics and computational science. It enables efficient manipulation of large, structured tensors with named indices and provides an intuitive interface for implementing algorithms like DMRG (Density Matrix Renormalization Group), TEBD (Time-Evolving Block Decimation), and more. ITensors.jl leverages Julia’s multiple dispatch and performance features to simplify the development of scalable and complex simulations involving quantum many-body systems.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 19
    Julia VS Code

    Julia VS Code

    Julia extension for Visual Studio Code

    This VS Code extension provides support for the Julia programming language. We build on Julia’s unique combination of ease-of-use and performance. Beginners and experts can build better software more quickly, and get to a result faster. With a completely live environment, Julia for VS Code aims to take the frustration and guesswork out of programming and put the fun back in. A hybrid “canvas programming” style combines the exploratory power of a notebook with the productivity and static analysis features of an IDE. VS Code is a powerful editor and customizable to your heart’s content (though the defaults are pretty good too). It has power features like multiple cursors, fuzzy file finding and Vim keybindings.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 20
    Oceananigans.jl

    Oceananigans.jl

    Julia software for fast, friendly, flexible fluid dynamics on CPUs

    Oceananigans is a fast, friendly, flexible software package for finite volume simulations of the nonhydrostatic and hydrostatic Boussinesq equations on CPUs and GPUs. It runs on GPUs (wow, fast!), though we believe Oceananigans makes the biggest waves with its ultra-flexible user interface that makes simple simulations easy, and complex, creative simulations possible.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 21
    Roots.jl

    Roots.jl

    Root finding functions for Julia

    This package contains simple routines for finding roots, or zeros, of scalar functions of a single real variable using floating-point math. The find_zero function provides the primary interface. The basic call is find_zero(f, x0, [M], [p]; kws...) where, typically, f is a function, x0 a starting point or bracketing interval, M is used to adjust the default algorithms used, and p can be used to pass in parameters. Bisection-like algorithms. For functions where a bracketing interval is known (one where f(a) and f(b) have alternate signs), a bracketing method, like Bisection, can be specified. The default is Bisection, for most floating point number types, employed in a manner exploiting floating point storage conventions. For other number types (e.g. BigFloat), an algorithm of Alefeld, Potra, and Shi is used by default. These default methods are guaranteed to converge. Other bracketing methods are available.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 22
    Symbolics.jl

    Symbolics.jl

    Symbolic programming for the next generation of numerical software

    Symbolics.jl is a high-performance symbolic computation library for the Julia programming language. It enables users to define, manipulate, and analyze mathematical expressions symbolically, with strong support for symbolic differentiation, simplification, equation solving, and code generation. Designed for use in scientific computing, machine learning, and engineering, Symbolics.jl integrates smoothly with Julia’s numerical ecosystem, allowing symbolic expressions to be compiled and optimized for high-speed evaluation.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 23
    Tullio.jl

    Tullio.jl

    Tullio is a very flexible einsum macro

    Tullio is a very flexible einsum macro. It understands many array operations written in index notation -- not just matrix multiplication and permutations, but also convolutions, stencils, scatter/gather, and broadcasting. Used by itself the macro writes ordinary nested loops much like Einsum.@einsum. One difference is that it can parse more expressions, and infer ranges for their indices. Another is that it will use multi-threading (via Threads.@spawn) and recursive tiling, on large enough arrays.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 24
    Vim Codefmt

    Vim Codefmt

    Vim plugin for syntax-aware code formatting

    vim-codefmt is a syntax-aware code formatting plugin for Vim that provides a unified interface to many best-in-class formatters across languages. It exposes simple commands to format either a selected range or an entire buffer, and integrates cleanly into everyday editing workflows. The plugin ships with a registry of built-in formatters and a pluggable architecture, allowing other plugins to register additional formatters without friction. Configuration is handled through maktaba and Glaive flags, so you can choose per-filetype tools, pass custom options, or point to specific formatter executables. Autoformat can be enabled via standard Vim autocommands, making it easy to format on filetype or on write while still allowing opt-out on a per-buffer basis. With broad language coverage—from C, C++, Java, Python, and Go to Kotlin, Rust, Swift, Bazel, Markdown, and more—vim-codefmt helps teams maintain consistent style across heterogeneous codebases.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 25
    AMDGPU.jl

    AMDGPU.jl

    AMD GPU (ROCm) programming in Julia

    AMD GPU (ROCm) programming in Julia.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
MongoDB Logo MongoDB