Generative AI for Windows

View 1635 business solutions

Browse free open source Generative AI and projects for Windows below. Use the toggles on the left to filter open source Generative AI by OS, license, language, programming language, and project status.

  • Stay in Flow. Let Zenflow Handle the Heavy Lifting. Icon
    Stay in Flow. Let Zenflow Handle the Heavy Lifting.

    Your AI engineering control center. Zenflow turns specs into shipped features using parallel agents and multi-repo intelligence.

    Zenflow is your engineering control center, turning specs into shipped features. Parallel agents handle coding, testing, and refactoring with real repo context. Multi-agent workflows remove bottlenecks and automate routine work so developers stay focused and in flow.
    Try free now
  • Auth0 for AI Agents now in GA Icon
    Auth0 for AI Agents now in GA

    Ready to implement AI with confidence (without sacrificing security)?

    Connect your AI agents to apps and data more securely, give users control over the actions AI agents can perform and the data they can access, and enable human confirmation for critical agent actions.
    Start building today
  • 1
    ProjectLibre - Project Management

    ProjectLibre - Project Management

    #1 alternative to Microsoft Project : Project Management & Gantt Chart

    ProjectLibre project management software: #1 free alternative to Microsoft Project w/ 7.8M+ downloads in 193 countries. ProjectLibre is a replacement of MS Project & includes Gantt Chart, Network Diagram, WBS, Earned Value etc. This site downloads our FOSS desktop app. 🌐 Try the Cloud: http://www.projectlibre.com/register/trial We also offer ProjectLibre Cloud—a subscription, AI-powered SaaS for teams & enterprises. Cloud supports multi-project management w/ role-based access, central resource pool, Dashboard, Portfolio View 💡 The AI Cloud version can generate full project plans (tasks, durations, dependencies) from a natural language prompt — in any language. 🌐 Try the Cloud: http://www.projectlibre.com/register/trial 💻 Mac tip: If blocked, go to System Preferences → Security → Allow install 🏆 InfoWorld “Best of Open Source” • Used at 1,700+ universities • 250K+ community 🙏 Support us: http://www.gofundme.com/f/projectlibre-free-open-source-development
    Leader badge
    Downloads: 10,573 This Week
    Last Update:
    See Project
  • 2
    llama.cpp

    llama.cpp

    Port of Facebook's LLaMA model in C/C++

    The llama.cpp project enables the inference of Meta's LLaMA model (and other models) in pure C/C++ without requiring a Python runtime. It is designed for efficient and fast model execution, offering easy integration for applications needing LLM-based capabilities. The repository focuses on providing a highly optimized and portable implementation for running large language models directly within C/C++ environments.
    Downloads: 89 This Week
    Last Update:
    See Project
  • 3
    ChatGPT Desktop Application

    ChatGPT Desktop Application

    🔮 ChatGPT Desktop Application (Mac, Windows and Linux)

    ChatGPT Desktop Application (Mac, Windows and Linux)
    Downloads: 45 This Week
    Last Update:
    See Project
  • 4
    InvokeAI

    InvokeAI

    InvokeAI is a leading creative engine for Stable Diffusion models

    InvokeAI is an implementation of Stable Diffusion, the open source text-to-image and image-to-image generator. It provides a streamlined process with various new features and options to aid the image generation process. It runs on Windows, Mac and Linux machines, and runs on GPU cards with as little as 4 GB or RAM. InvokeAI is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. InvokeAI offers an industry leading Web Interface, interactive Command Line Interface, and also serves as the foundation for multiple commercial products. This fork is supported across Linux, Windows and Macintosh. Linux users can use either an Nvidia-based card (with CUDA support) or an AMD card (using the ROCm driver). We do not recommend the GTX 1650 or 1660 series video cards. They are unable to run in half-precision mode and do not have sufficient VRAM to render 512x512 images.
    Downloads: 17 This Week
    Last Update:
    See Project
  • eProcurement Software Icon
    eProcurement Software

    Enterprises and companies seeking a solution to manage all their procurement operations and processes

    eBuyerAssist by Eyvo is a cloud-based procurement solution designed for businesses of all sizes and industries. Fully modular and scalable, it streamlines the entire procurement lifecycle—from requisition to fulfillment. The platform includes powerful tools for strategic sourcing, supplier management, warehouse operations, and contract oversight. Additional modules cover purchase orders, approval workflows, inventory and asset management, customer orders, budget control, cost accounting, invoice matching, vendor credit checks, and risk analysis. eBuyerAssist centralizes all procurement functions into a single, easy-to-use system—improving visibility, control, and efficiency across your organization. Whether you're aiming to reduce costs, enhance compliance, or align procurement with broader business goals, eBuyerAssist helps you get there faster, smarter, and with measurable results.
    Learn More
  • 5
    GIMP ML

    GIMP ML

    AI for GNU Image Manipulation Program

    This repository introduces GIMP3-ML, a set of Python plugins for the widely popular GNU Image Manipulation Program (GIMP). It enables the use of recent advances in computer vision to the conventional image editing pipeline. Applications from deep learning such as monocular depth estimation, semantic segmentation, mask generative adversarial networks, image super-resolution, de-noising and coloring have been incorporated with GIMP through Python-based plugins. Additionally, operations on images such as edge detection and color clustering have also been added. GIMP-ML relies on standard Python packages such as numpy, scikit-image, pillow, pytorch, open-cv, scipy. In addition, GIMP-ML also aims to bring the benefits of using deep learning networks used for computer vision tasks to routine image processing workflows.
    Downloads: 14 This Week
    Last Update:
    See Project
  • 6
    Finetune Transformer LM

    Finetune Transformer LM

    Code for "Improving Language Understanding by Generative Pre-Training"

    finetune-transformer-lm is a research codebase that accompanies the paper “Improving Language Understanding by Generative Pre-Training,” providing a minimal implementation focused on fine-tuning a transformer language model for evaluation tasks. The repository centers on reproducing the ROCStories Cloze Test result and includes a single-command training workflow to run the experiment end to end. It documents that runs are non-deterministic due to certain GPU operations and reports a median accuracy over multiple trials that is slightly below the single-run result in the paper, reflecting expected variance in practice. The project ships lightweight training, data, and analysis scripts, keeping the footprint small while making the experimental pipeline transparent. It is provided as archived, research-grade code intended for replication and study rather than continuous development.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 7
    Langflow

    Langflow

    Low-code app builder for RAG and multi-agent AI applications

    Langflow is a low-code app builder for RAG and multi-agent AI applications. It’s Python-based and agnostic to any model, API, or database.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 8
    VALL-E

    VALL-E

    PyTorch implementation of VALL-E (Zero-Shot Text-To-Speech)

    We introduce a language modeling approach for text to speech synthesis (TTS). Specifically, we train a neural codec language model (called VALL-E) using discrete codes derived from an off-the-shelf neural audio codec model, and regard TTS as a conditional language modeling task rather than continuous signal regression as in previous work. During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems. VALL-E emerges in-context learning capabilities and can be used to synthesize high-quality personalized speech with only a 3-second enrolled recording of an unseen speaker as an acoustic prompt. Experiment results show that VALL-E significantly outperforms the state-of-the-art zero-shot TTS system in terms of speech naturalness and speaker similarity. In addition, we find VALL-E could preserve the speaker's emotion and acoustic environment of the acoustic prompt in synthesis.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 9
    Diffusers

    Diffusers

    State-of-the-art diffusion models for image and audio generation

    Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or training your own diffusion models, Diffusers is a modular toolbox that supports both. Our library is designed with a focus on usability over performance, simple over easy, and customizability over abstractions. State-of-the-art diffusion pipelines that can be run in inference with just a few lines of code. Interchangeable noise schedulers for different diffusion speeds and output quality. Pretrained models that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems. We recommend installing Diffusers in a virtual environment from PyPi or Conda. For more details about installing PyTorch and Flax, please refer to their official documentation.
    Downloads: 8 This Week
    Last Update:
    See Project
  • Inventors: Validate Your Idea, Protect It and Gain Market Advantages Icon
    Inventors: Validate Your Idea, Protect It and Gain Market Advantages

    SenseIP is ideal for individual inventors, startups, and businesses

    senseIP is an AI innovation platform for inventors, automating any aspect of IP from the moment you have an idea. You can have it researched for uniqueness and protected; quickly and effortlessly, without expensive attorneys. Built for business success while securing your competitive edge.
    Learn More
  • 10
    Dream Textures

    Dream Textures

    Stable Diffusion built-in to Blender

    Create textures, concept art, background assets, and more with a simple text prompt. Use the 'Seamless' option to create textures that tile perfectly with no visible seam. Texture entire scenes with 'Project Dream Texture' and depth to image. Re-style animations with the Cycles render pass. Run the models on your machine to iterate without slowdowns from a service. Create textures, concept art, and more with text prompts. Learn how to use the various configuration options to get exactly what you're looking for. Texture entire models and scenes with depth to image. Inpaint to fix up images and convert existing textures into seamless ones automatically. Outpaint to increase the size of an image by extending it in any direction. Perform style transfer and create novel animations with Stable Diffusion as a post processing step. Dream Textures has been tested with CUDA and Apple Silicon GPUs. Over 4GB of VRAM is recommended.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 11
    KoboldCpp

    KoboldCpp

    Run GGUF models easily with a UI or API. One File. Zero Install.

    KoboldCpp is an easy-to-use AI text-generation software for GGML and GGUF models, inspired by the original KoboldAI. It's a single self-contained distributable that builds off llama.cpp and adds many additional powerful features.
    Downloads: 187 This Week
    Last Update:
    See Project
  • 12
    Deep Lake

    Deep Lake

    Data Lake for Deep Learning. Build, manage, and query datasets

    Deep Lake (formerly known as Activeloop Hub) is a data lake for deep learning applications. Our open-source dataset format is optimized for rapid streaming and querying of data while training models at scale, and it includes a simple API for creating, storing, and collaborating on AI datasets of any size. It can be deployed locally or in the cloud, and it enables you to store all of your data in one place, ranging from simple annotations to large videos. Deep Lake is used by Google, Waymo, Red Cross, Omdena, Yale, & Oxford. Use one API to upload, download, and stream datasets to/from AWS S3/S3-compatible storage, GCP, Activeloop cloud, or local storage. Store images, audios and videos in their native compression. Deeplake automatically decompresses them to raw data only when needed, e.g., when training a model. Treat your cloud datasets as if they are a collection of NumPy arrays in your system's memory. Slice them, index them, or iterate through them.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 13
    DeepMozart

    DeepMozart

    Audio generation using diffusion models

    Audio generation using diffusion models in PyTorch. The code is based on the audio-diffusion-pytorch repository.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 14
    Megatron

    Megatron

    Ongoing research training transformer models at scale

    Megatron is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. This repository is for ongoing research on training large transformer language models at scale. We developed efficient, model-parallel (tensor, sequence, and pipeline), and multi-node pre-training of transformer based models such as GPT, BERT, and T5 using mixed precision. Megatron is also used in NeMo Megatron, a framework to help enterprises overcome the challenges of building and training sophisticated natural language processing models with billions and trillions of parameters. Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 15
    Stable Diffusion v 2.1 web UI

    Stable Diffusion v 2.1 web UI

    Lightweight Stable Diffusion v 2.1 web UI: txt2img, img2img, depth2img

    Lightweight Stable Diffusion v 2.1 web UI: txt2img, img2img, depth2img, in paint and upscale4x. Gradio app for Stable Diffusion 2 by Stability AI. It uses Hugging Face Diffusers implementation. Currently supported pipelines are text-to-image, image-to-image, inpainting, upscaling and depth-to-image.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 16
    FID score for PyTorch

    FID score for PyTorch

    Compute FID scores with PyTorch

    This is a port of the official implementation of Fréchet Inception Distance to PyTorch. FID is a measure of similarity between two datasets of images. It was shown to correlate well with human judgement of visual quality and is most often used to evaluate the quality of samples of Generative Adversarial Networks. FID is calculated by computing the Fréchet distance between two Gaussians fitted to feature representations of the Inception network. The weights and the model are exactly the same as in the official Tensorflow implementation, and were tested to give very similar results (e.g. .08 absolute error and 0.0009 relative error on LSUN, using ProGAN generated images). However, due to differences in the image interpolation implementation and library backends, FID results still differ slightly from the original implementation. In difference to the official implementation, you can choose to use a different feature layer of the Inception network instead of the default pool3 layer.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 17
    LangChain

    LangChain

    ⚡ Building applications with LLMs through composability ⚡

    Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. But using these LLMs in isolation is often not enough to create a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge. This library is aimed at assisting in the development of those types of applications.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 18
    ChatGPT Java

    ChatGPT Java

    A Java client for the ChatGPT API

    ChatGPT Java is a Java client for the ChatGPT API. Use official API with model gpt-3.5-turbo.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 19
    DALL-E 2 - Pytorch

    DALL-E 2 - Pytorch

    Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis

    Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis neural network, in Pytorch. The main novelty seems to be an extra layer of indirection with the prior network (whether it is an autoregressive transformer or a diffusion network), which predicts an image embedding based on the text embedding from CLIP. Specifically, this repository will only build out the diffusion prior network, as it is the best performing variant (but which incidentally involves a causal transformer as the denoising network) To train DALLE-2 is a 3 step process, with the training of CLIP being the most important. To train CLIP, you can either use x-clip package, or join the LAION discord, where a lot of replication efforts are already underway. Then, you will need to train the decoder, which learns to generate images based on the image embedding coming from the trained CLIP.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 20
    Old Photo Restoration

    Old Photo Restoration

    Bringing Old Photo Back to Life (CVPR 2020 oral)

    We propose to restore old photos that suffer from severe degradation through a deep learning approach. Unlike conventional restoration tasks that can be solved through supervised learning, the degradation in real photos is complex and the domain gap between synthetic images and real old photos makes the network fail to generalize. Therefore, we propose a novel triplet domain translation network by leveraging real photos along with massive synthetic image pairs. Specifically, we train two variational autoencoders (VAEs) to respectively transform old photos and clean photos into two latent spaces. And the translation between these two latent spaces is learned with synthetic paired data. This translation generalizes well to real photos because the domain gap is closed in the compact latent space. Besides, to address multiple degradations mixed in one old photo, we design a global branch with a partial nonlocal block targeting to the structured defects, such as scratches and dust spots.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 21
    StoryTeller

    StoryTeller

    Multimodal AI Story Teller, built with Stable Diffusion, GPT, etc.

    A multimodal AI story teller, built with Stable Diffusion, GPT, and neural text-to-speech (TTS). Given a prompt as an opening line of a story, GPT writes the rest of the plot; Stable Diffusion draws an image for each sentence; a TTS model narrates each line, resulting in a fully animated video of a short story, replete with audio and visuals. To develop locally, install dev dependencies and install pre-commit hooks. This will automatically trigger linting and code quality checks before each commit. The final video will be saved as /out/out.mp4, alongside other intermediate images, audio files, and subtitles. For more advanced use cases, you can also directly interface with Story Teller in Python code.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 22
    AudioGenerator

    AudioGenerator

    Generates a sound given: volume, frequency, duration

    Generates a sound given: volume, frequency, duration! Download build.zip, unpack zip, and run the executable.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 23
    AudioLM - Pytorch

    AudioLM - Pytorch

    Implementation of AudioLM audio generation model in Pytorch

    Implementation of AudioLM, a Language Modeling Approach to Audio Generation out of Google Research, in Pytorch It also extends the work for conditioning with classifier free guidance with T5. This allows for one to do text-to-audio or TTS, not offered in the paper. Yes, this means VALL-E can be trained from this repository. It is essentially the same. This repository now also contains a MIT licensed version of SoundStream. It is also compatible with EnCodec, however, be aware that it has a more restrictive non-commercial license, if you choose to use it.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 24
    Deep Exemplar-based Video Colorization

    Deep Exemplar-based Video Colorization

    The source code of CVPR 2019 paper "Deep Exemplar-based Colorization"

    The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization". End-to-end network for exemplar-based video colorization. The main challenge is to achieve temporal consistency while remaining faithful to the reference style. To address this issue, we introduce a recurrent framework that unifies the semantic correspondence and color propagation steps. Both steps allow a provided reference image to guide the colorization of every frame, thus reducing accumulated propagation errors. Video frames are colorized in sequence based on the colorization history, and its coherency is further enforced by the temporal consistency loss. All of these components, learned end-to-end, help produce realistic videos with good temporal stability. Experiments show our result is superior to the state-of-the-art methods both quantitatively and qualitatively. In order to colorize your own video, it requires to extract the video frames, and provide a reference image as an example.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25
    GPT Neo

    GPT Neo

    An implementation of model parallel GPT-2 and GPT-3-style models

    An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here to play with our pre-trained models, we strongly recommend you try out the HuggingFace Transformer integration. Training and inference is officially supported on TPU and should work on GPU as well. This repository will be (mostly) archived as we move focus to our GPU-specific repo, GPT-NeoX. NB, while neo can technically run a training step at 200B+ parameters, it is very inefficient at those scales. This, as well as the fact that many GPUs became available to us, among other things, prompted us to move development over to GPT-NeoX. All evaluations were done using our evaluation harness. Some results for GPT-2 and GPT-3 are inconsistent with the values reported in the respective papers. We are currently looking into why, and would greatly appreciate feedback and further testing of our eval harness.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next