Python Financial Software

View 8033 business solutions

Browse free open source Python Financial Software and projects below. Use the toggles on the left to filter open source Python Financial Software by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • AI-powered service management for IT and enterprise teams Icon
    AI-powered service management for IT and enterprise teams

    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity. Maximize operational efficiency with refreshingly simple, AI-powered Freshservice.
    Try it Free
  • 1
    Yahoo! Finance market data downloader

    Yahoo! Finance market data downloader

    Yahoo! Finance market data downloader

    Ever since Yahoo! finance decommissioned their historical data API, many programs that relied on it to stop working. yfinance aims to solve this problem by offering a reliable, threaded, and Pythonic way to download historical market data from Yahoo! finance. yfinance aimed to offer a temporary fix to the problem by scraping the data from Yahoo! Finance and returning a the data in the same format as pandas_datareader's get_data_yahoo(), thus keeping the code changes in existing software to a minimum. The latest version of yfinance is a complete re-write of the libray, offering a reliable method of downloading historical market data from Yahoo! Finance, up to 1 minute granularity, with a more Pythonic way. The Ticker() module allows you get market and metadata for security, using a Pythonic way.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 2
    Finance Database

    Finance Database

    This is a database of 300.000+ symbols containing Equities, ETFs, etc.

    As a private investor, the sheer amount of information that can be found on the internet is rather daunting. Trying to understand what type of companies or ETFs are available is incredibly challenging with there being millions of companies and derivatives available on the market. Sure, the most traded companies and ETFs can quickly be found simply because they are known to the public (for example, Microsoft, Tesla, S&P500 ETF or an All-World ETF). However, what else is out there is often unknown. This database tries to solve that. It features 300.000+ symbols containing Equities, ETFs, Funds, Indices, Currencies, Cryptocurrencies and Money Markets. It, therefore, allows you to obtain a broad overview of sectors, industries, types of investments and much more. The aim of this database is explicitly not to provide up-to-date fundamentals or stock data as those can be obtained with ease (with the help of this database) by using yfinance, FundamentalAnalysis or ThePassiveInvestor.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 3
    AIQuant

    AIQuant

    AI-powered platform for quantitative trading

    ai_quant_trade is an AI-powered, one-stop open-source platform for quantitative trading—ranging from learning and simulation to actual trading. It consolidates stock trading knowledge, strategy examples, factor discovery, traditional rules-based strategies, various machine learning and deep learning methods, reinforcement learning, graph neural networks, high-frequency trading, C++ deployment, and Jupyter Notebook examples for practical hands-on use.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 4
    OpenBB Terminal

    OpenBB Terminal

    Investment research for everyone, anywhere

    Fully written in python which is one of the most used programming languages due to its simplified syntax and shallow learning curve. It is the first time in history that users, regardless of their background, can so easily add features to an investment research platform. The MIT Open Source license allows any user to fork the project to either add features to the broader community or create their own customized terminal version. The terminal allows for users to import their own proprietary datasets to use on our econometric menu. In addition, users are allowed to export any type of data to any type of format whether that is raw data in Excel or an image in PNG. This is ideal for finance content creation. Create notebook templates (through papermill) which can be run on different tickers. This level of automation allows to speed up the development of your investment thesis and reduce human error.
    Downloads: 5 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    QuickFIX
    QuickFIX is the worlds first Open Source C++ FIX (Financial Information eXchange) engine, helping financial institutions easily integrate with each other. The SVN repository is now locked. Latest code is hosted at github. https://github.com/quickfix/quickfix
    Downloads: 36 This Week
    Last Update:
    See Project
  • 6
    NautilusTrader

    NautilusTrader

    A high-performance algorithmic trading platform

    NautilusTrader is an open-source, high-performance, production-grade algorithmic trading platform, provides quantitative traders with the ability to backtest portfolios of automated trading strategies on historical data with an event-driven engine, and also deploy those same strategies live, with no code changes. The platform is 'AI-first', designed to develop and deploy algorithmic trading strategies within a highly performant and robust Python native environment. This helps to address the parity challenge of keeping the Python research/backtest environment, consistent with the production live trading environment. NautilusTraders design, architecture and implementation philosophy holds software correctness and safety at the highest level, with the aim of supporting Python native, mission-critical, trading system backtesting and live deployment workloads.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    NeuralProphet

    NeuralProphet

    A simple forecasting package

    NeuralProphet bridges the gap between traditional time-series models and deep learning methods. It's based on PyTorch and can be installed using pip. A Neural Network based Time-Series model, inspired by Facebook Prophet and AR-Net, built on PyTorch. You can find the datasets used in the tutorials, including data preprocessing examples, in our neuralprophet-data repository. The documentation page may not we entirely up to date. Docstrings should be reliable, please refer to those when in doubt. We are working on an improved documentation. We appreciate any help to improve and update the docs. Lagged regressors (measured features, e.g temperature sensor). Future regressors (in advance known features, e.g. temperature forecast). Country holidays & recurring special events. Sparsity of coefficients through regularization. Plotting for forecast components, model coefficients as well as final predictions. Automatic selection of training-related hyperparameters.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    Prophet

    Prophet

    Tool for producing high quality forecasts for time series data

    Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well. Prophet is used in many applications across Facebook for producing reliable forecasts for planning and goal setting. We’ve found it to perform better than any other approach in the majority of cases. We fit models in Stan so that you get forecasts in just a few seconds. Get a reasonable forecast on messy data with no manual effort. Prophet is robust to outliers, missing data, and dramatic changes in your time series.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    PyBroker

    PyBroker

    Algorithmic Trading in Python with Machine Learning

    Are you looking to enhance your trading strategies with the power of Python and machine learning? Then you need to check out PyBroker! This Python framework is designed for developing algorithmic trading strategies, with a focus on strategies that use machine learning. With PyBroker, you can easily create and fine-tune trading rules, build powerful models, and gain valuable insights into your strategy’s performance.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Picsart Enterprise Background Removal API for Stunning eCommerce Visuals Icon
    Picsart Enterprise Background Removal API for Stunning eCommerce Visuals

    Instantly remove the background from your images in just one click.

    With our Remove Background API tool, you can access the transformative capabilities of automation , which will allow you to turn any photo asset into compelling product imagery. With elevated visuals quality on your digital platforms, you can captivate your audience, and therefore achieve higher engagement and sales.
    Learn More
  • 10
    Qlib

    Qlib

    Qlib is an AI-oriented quantitative investment platform

    Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment. With Qlib, you can easily try your ideas to create better Quant investment strategies. An increasing number of SOTA Quant research works/papers are released in Qlib. With Qlib, users can easily try their ideas to create better Quant investment strategies. At the module level, Qlib is a platform that consists of above components. The components are designed as loose-coupled modules and each component could be used stand-alone.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    ThetaGang

    ThetaGang

    ThetaGang is an IBKR bot for collecting money

    ThetaGang is an IBKR trading bot for collecting premiums by selling options using "The Wheel" strategy. The Wheel is a strategy that surfaced on Reddit but has been used by many in the past. This bot implements a slightly modified version of The Wheel, with my own personal tweaks. The strategy, as implemented here, does a few things differently from the one described in the post above. For one, it's intended to be used to augment a typical index-fund-based portfolio with specific asset allocations. For example, you might want to use a 60/40 portfolio with SPY (S&P500 fund) and TLT (20-year treasury fund). This strategy reduces risk, but may also limit gains from big market swings. By reducing risk, one can increase leverage. ThetaGang will try to acquire your desired allocation of each stock or ETF according to the weights you specify in the config. To acquire the positions, the script will write puts when conditions are met.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    Odoo

    Odoo

    Open-source business management software

    Odoo 18 is a comprehensive open-source business management software that offers a suite of integrated applications to streamline various organizational processes. Designed for flexibility and scalability, it provides tools for managing functions like sales, inventory, accounting, human resources, and customer relationships. Odoo's modular structure allows businesses to adopt only the features they need while maintaining the option to expand functionality as they grow. The open-source version is community-driven, making it cost-effective and continuously improving through global developer contributions. Its user-friendly interface and robust customization options make it a popular choice for small to medium-sized businesses seeking an adaptable and efficient ERP solution.
    Downloads: 44 This Week
    Last Update:
    See Project
  • 13
    Polar.sh

    Polar.sh

    Polar is the best funding & monetization platform for developers

    Focus on building your passion, while we focus on the infrastructure to get you paid. Your Polar page can be displayed as an official funding option across your GitHub repositories. Get one-time donations of support from your community with ease. Turn issues into a crowdfunded backlog and share the funding with your contributors.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    PyTorch Forecasting

    PyTorch Forecasting

    Time series forecasting with PyTorch

    PyTorch Forecasting aims to ease state-of-the-art time series forecasting with neural networks for both real-world cases and research alike. The goal is to provide a high-level API with maximum flexibility for professionals and reasonable defaults for beginners. A time series dataset class that abstracts handling variable transformations, missing values, randomized subsampling, multiple history lengths, etc. A base model class that provides basic training of time series models along with logging in tensorboard and generic visualizations such actual vs predictions and dependency plots. Multiple neural network architectures for timeseries forecasting that have been enhanced for real-world deployment and come with in-built interpretation capabilities. The package is built on PyTorch Lightning to allow training on CPUs, single and multiple GPUs out-of-the-box.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    OpenMoneyBox

    OpenMoneyBox

    Budget management

    OpenMoneyBox is an application designed to manage small personal budgets in the easiest way. Check the homepage to download apps/packages for additional Operating Systems.
    Downloads: 19 This Week
    Last Update:
    See Project
  • 16
    FinGPT

    FinGPT

    Open-Source Financial Large Language Models!

    FinGPT is an open-source large language model tailored specifically for financial tasks. Developed by AI4Finance Foundation, it is designed to assist with various financial applications, such as forecasting, financial sentiment analysis, and portfolio management. FinGPT has been trained on a diverse range of financial datasets, making it a powerful tool for finance professionals looking to leverage AI for data-driven decision-making. The model is freely available on platforms like Hugging Face, allowing for easy access and customization. FinGPT's capabilities are extended by its ability to integrate with existing financial systems and enhance predictive analytics in finance.
    Leader badge
    Downloads: 18 This Week
    Last Update:
    See Project
  • 17
    AlphaPy

    AlphaPy

    Python AutoML for Trading Systems and Sports Betting

    AlphaPy is a Python-based AutoML framework tailored for trading systems and sports betting applications. Built on popular libraries like scikit-learn and pandas, it enables data scientists and speculators to craft predictive models, ensemble strategies, and automated forecasting systems with minimal setup.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    AutoTrader

    AutoTrader

    A Python-based development platform for automated trading systems

    AutoTrader is a Python-based platform—now archived—designed to facilitate the full lifecycle of automated trading systems. It provides tools for backtesting, strategy optimization, visualization, and live trading integration.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Google Spreadsheets Python

    Google Spreadsheets Python

    Google Sheets Python API

    gspread is a Python API for Google Sheets. A service account is a special type of Google account intended to represent a non-human user that needs to authenticate and be authorized to access data in Google APIs [sic]. Since it’s a separate account, by default it does not have access to any spreadsheet until you share it with this account. Just like any other Google account. To access spreadsheets via Google Sheets API you need to authenticate and authorize your application. Older versions of gspread have used oauth2client. Google has deprecated it in favor of google-auth. If you’re still using oauth2client credentials, the library will convert these to google-auth for you, but you can change your code to use the new credentials to make sure nothing breaks in the future. If you familiar with the Jupyter Notebook, Google Colaboratory is probably the easiest way to get started using gspread.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Optopsy

    Optopsy

    A nimble options backtesting library for Python

    Optopsy is a Python-based, nimble backtesting and statistics library focused on evaluating options trading strategies like calls, puts, straddles, spreads, and more, using pandas-driven analysis.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    TradeMaster

    TradeMaster

    TradeMaster is an open-source platform for quantitative trading

    TradeMaster is a first-of-its-kind, best-in-class open-source platform for quantitative trading (QT) empowered by reinforcement learning (RL), which covers the full pipeline for the design, implementation, evaluation and deployment of RL-based algorithms. TradeMaster is composed of 6 key modules: 1) multi-modality market data of different financial assets at multiple granularities; 2) whole data preprocessing pipeline; 3) a series of high-fidelity data-driven market simulators for mainstream QT tasks; 4) efficient implementations of over 13 novel RL-based trading algorithms; 5) systematic evaluation toolkits with 6 axes and 17 measures; 6) different interfaces for interdisciplinary users.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    VisiData

    VisiData

    A terminal spreadsheet multitool for discovering and arranging data

    VisiData is an interactive multitool for tabular data. It combines the clarity of a spreadsheet, the efficiency of the terminal, and the power of Python, into a lightweight utility that can handle millions of rows with ease. A terminal interface for exploring and arranging tabular data. VisiData supports tsv, CSV, SQLite, JSON, xlsx (Excel), hdf5, and many other formats. Requires Linux, OS/X, or Windows (with WSL). Hundreds of other commands and options are also available; see the documentation. Code in the stable branch of this repository, including the main vd application, loaders, and plugins, is available for use and redistribution under GPLv3. VisiData is a free, open-source tool that lets you quickly open, explore, summarize, and analyze datasets in your computer’s terminal. VisiData works with CSV files, Excel spreadsheets, SQL databases, and many other data sources.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    A quantitative finance C++ library for modeling, pricing, trading, and risk management in real-life. A cross-platform free/open-source tool for derivatives and financial engineering.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 24
    Accounting and Billing program for ISPs with PrePaid VoIP/Dialup/Lan services.
    Leader badge
    Downloads: 9 This Week
    Last Update:
    See Project
  • 25

    OpenOffice.org Utility Library

    Library modules for creating ODF documents.

    OpenOffice.org Utility Library modules for creating Open Document Format (ODF) documents which can be read by Office Suites including OpenOffice.org, LibreOffice.org, and Microsoft Office. Currently, ooolib-python can create Calc spreadsheet ODS documents. These documents include many features including: - Create multiple table spreadsheets - Cells with text, numbers, dates, formulas - Ability to use built-in styles - Ability to create automatic styles (ie. bold, italics, underline, font size, font color, background color, etc.) - Set column and row attributes including width and height I am currently hosting the new development code at the following URL: https://github.com/josephcolton/ooolib-python I will be posting releases here on SourceForge as well as GitHub, so you can come to either place for the releases. The newest code will only be available using Git on GitHub.
    Downloads: 4 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.