Open Source ChromeOS Facial Recognition Software

Facial Recognition Software for ChromeOS

Browse free open source Facial Recognition software and projects for ChromeOS below. Use the toggles on the left to filter open source Facial Recognition software by OS, license, language, programming language, and project status.

  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 1
    VGGFace2

    VGGFace2

    VGGFace2 Dataset for Face Recognition

    VGGFace2 is a large-scale face recognition dataset developed to support research on facial recognition across variations in pose, age, illumination, and identity. It consists of 3.31 million images covering 9,131 subjects, with an average of over 360 images per subject. The dataset was collected from Google Image Search, ensuring a wide diversity in ethnicity, profession, and real-world conditions. It is split into a training set with 8,631 identities and a test set with 500 identities, making it suitable for benchmarking and large-scale model training. Alongside the dataset, the repository provides pre-trained models based on ResNet-50 and SE-ResNet-50 architectures, trained with both MS-Celeb-1M pretraining and fine-tuning on VGGFace2. These models achieve strong verification performance on benchmarks such as IJB-B and include variants with lower-dimensional embeddings for compact feature representation. The project also includes preprocessing tools, face detection scripts, and etc.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    MediaPipe Face Detection

    MediaPipe Face Detection

    Detect faces in an image

    The MediaPipe Face Detection model is a high-performance, real-time face detection solution that uses machine learning to identify faces in images and video streams. It is optimized for mobile and embedded platforms, offering fast and accurate face detection while maintaining a small memory footprint. This model supports multiple face detections and is highly efficient, making it suitable for a variety of applications such as augmented reality, user authentication, and facial expression analysis.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    Blazeface

    Blazeface

    Blazeface is a lightweight model that detects faces in images

    Blazeface is a lightweight, high-performance face detection model designed for mobile and embedded devices, developed by TensorFlow. It is optimized for real-time face detection tasks and runs efficiently on mobile CPUs, ensuring minimal latency and power consumption. Blazeface is based on a fast architecture and uses deep learning techniques to detect faces with high accuracy, even in challenging conditions. It supports multiple face detection in varying lighting and poses, and is designed to work in real-world applications like mobile apps, robotics, and other resource-constrained environments.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    System using to verify personality by face's photo.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Photo and Video Editing APIs and SDKs Icon
    Photo and Video Editing APIs and SDKs

    Trusted by 150 million+ creators and businesses globally

    Unlock Picsart's full editing suite by embedding our Editor SDK directly into your platform. Offer your users the power of a full design suite without leaving your site.
    Learn More
  • 5
    FaceAccess Facial Recognition System

    FaceAccess Facial Recognition System

    FaceAccess is an Access Control System based on Facial Recognition

    With the growing need to exchange information and share resources, information security has become more important than ever in both the public and private sectors. Although many technologies have been developed to control access to files or resources, to enforce security policies, and to audit network usages, there does not exist a technology that can verify that the user who is using the system is the same person who logged in. FaceAccess provides a prototype implementation as a "login module" of an information system. The goal is to enhance the level of system security by periodically checking the user’s identity without disrupting the user’s activities. Installation instructions can be found in the package. If you need anymore guidance, please use the Wiki to post any kind of inquiry. NB: Please Donate to support the development of this project. PM me for other means. Any kind of support will be very much appreciated. Thanks a bunch.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    WHAY is a Video-based Face Recognition tool written in MATLAB. It aims to exploits PCA recognizing as better as possible and tests the limits of this approach.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Artificial neural network with eigenfaces for face recognition
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    1>Face Recognition on real-time based. 2>shirt -color recognition on image based.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Java framework for face detection and face recognition based on different plugin and filter types. Includes Eigenfaces in pure Java, OpenCV detection via JNI, integration of the Betaface.com Web Service, skin color filter, Adobe XMP Export and a nice GUI
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.