Open Source Linux Autonomous Driving Software

Autonomous Driving Software for Linux

View 3 business solutions

Browse free open source Autonomous Driving software and projects for Linux below. Use the toggles on the left to filter open source Autonomous Driving software by OS, license, language, programming language, and project status.

  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 1
    CARLA Simulator

    CARLA Simulator

    Open-source simulator for autonomous driving research.

    CARLA has been developed from the ground up to support development, training, and validation of autonomous driving systems. In addition to open-source code and protocols, CARLA provides open digital assets (urban layouts, buildings, vehicles) that were created for this purpose and can be used freely. The simulation platform supports flexible specification of sensor suites, environmental conditions, full control of all static and dynamic actors, maps generation and much more. Multiple clients in the same or in different nodes can control different actors. CARLA exposes a powerful API that allows users to control all aspects related to the simulation, including traffic generation, pedestrian behaviors, weathers, sensors, and much more. Users can configure diverse sensor suites including LIDARs, multiple cameras, depth sensors and GPS among others. Users can easily create their own maps following the OpenDrive standard via tools like RoadRunner.
    Downloads: 18 This Week
    Last Update:
    See Project
  • 2
    highway-env

    highway-env

    A minimalist environment for decision-making in autonomous driving

    HighwayEnv is an OpenAI Gym-compatible environment focused on autonomous driving scenarios. It provides flexible simulations for testing decision-making algorithms in highway, intersection, and merging traffic situations.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    openpilot

    openpilot

    Open source driver assistance system

    openpilot is an open-source driver assistance system designed to improve upon the existing driver assistance of most modern cars today. openpilot gives you Tesla Autopilot-like functionality with functions like Adaptive Cruise Control (ACC), Automated Lane Centering (ALC), Forward Collision Warning (FCW) and Lane Departure Warning (LDW). All these with just a push of a button. openpilot also includes a camera-based driver monitoring feature that alerts distracted and asleep drivers while it is engaged. openpilot supports over 85 car makes and models of various years, and the list of supported vehicles continues to grow, including community-supported cars and features. Thousands of drivers have trusted openpilot and have rediscovered the joy of driving again with openpilot. While engaged, openpilot includes camera-based driver monitoring that works both day and night to alert the driver when their eyes are not on the road ahead.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    AWS IoT FleetWise Edge

    AWS IoT FleetWise Edge

    AWS IoT FleetWise Edge Agent

    Easily collect, transform, and transfer vehicle data to the cloud in near-real-time. AWS IoT FleetWise makes it easy and cost-effective for automakers to collect, transform, and transfer vehicle data to the cloud in near-real-time and use it to build applications with analytics and machine learning that improve vehicle quality, safety, and autonomy. Train autonomous vehicles (AVs) and advanced driver assistance systems (ADAS) with camera data collected from a fleet of production vehicles. Improve electric vehicle (EV) battery range estimates with crowdsourced environmental data, such as weather and driving conditions, from nearby vehicles. Collect select data from nearby vehicles and use it to notify drivers of changing road conditions, such as lane closures or construction. Use near real-time data to proactively detect and mitigate fleet-wide quality issues.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    This project intends to develop a system to control the vehicles over a wireless network. Each vehicle contains embedded software that interfaces with a set of sensors and actuators that allow the vehicle to navigate, to communicate with roadside sensors,
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    BEVFormer

    BEVFormer

    Implementation of BEVFormer, a camera-only framework

    3D visual perception tasks, including 3D detection and map segmentation based on multi-camera images, are essential for autonomous driving systems. In this work, we present a new framework termed BEVFormer, which learns unified BEV representations with spatiotemporal transformers to support multiple autonomous driving perception tasks. In a nutshell, BEVFormer exploits both spatial and temporal information by interacting with spatial and temporal space through predefined grid-shaped BEV queries. To aggregate spatial information, we design spatial cross-attention that each BEV query extracts the spatial features from the regions of interest across camera views. For temporal information, we propose temporal self-attention to recurrently fuse the history BEV information. Our approach achieves the new state-of-the-art 56.9\% in terms of NDS metric on the nuScenes \texttt{test} set, which is 9.0 points higher than previous best arts and on par with the performance of LiDAR-based baseline.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Coach

    Coach

    Enables easy experimentation with state of the art algorithms

    Coach is a python framework that models the interaction between an agent and an environment in a modular way. With Coach, it is possible to model an agent by combining various building blocks, and training the agent on multiple environments. The available environments allow testing the agent in different fields such as robotics, autonomous driving, games and more. It exposes a set of easy-to-use APIs for experimenting with new RL algorithms and allows simple integration of new environments to solve. Coach collects statistics from the training process and supports advanced visualization techniques for debugging the agent being trained. Coach supports many state-of-the-art reinforcement learning algorithms, which are separated into three main classes - value optimization, policy optimization, and imitation learning. Coach supports a large number of environments which can be solved using reinforcement learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Software Infrastructure for Stanford's Autonomous Vehicles
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    road-scene-understanding

    road-scene-understanding

    A dataset for road scene understanding.

    Autonomous driving is gaining increasing attention in the computer vision research community, as vision based scene understanding is key to self-driving cars. In this web page, we make image datasets public for the purpose of furthering research in scene understanding.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Photo and Video Editing APIs and SDKs Icon
    Photo and Video Editing APIs and SDKs

    Trusted by 150 million+ creators and businesses globally

    Unlock Picsart's full editing suite by embedding our Editor SDK directly into your platform. Offer your users the power of a full design suite without leaving your site.
    Learn More
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.