Browse free open source Python AI Video Generators and projects below. Use the toggles on the left to filter open source Python AI Video Generators by OS, license, language, programming language, and project status.

  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • Teradata VantageCloud Enterprise is a data analytics platform for performing advanced analytics on AWS, Azure, and Google Cloud. Icon
    Teradata VantageCloud Enterprise is a data analytics platform for performing advanced analytics on AWS, Azure, and Google Cloud.

    Power faster innovation with Teradata VantageCloud

    VantageCloud is the complete cloud analytics and data platform, delivering harmonized data and Trusted AI for all. Built for performance, flexibility, and openness, VantageCloud enables organizations to unify diverse data sources, run complex analytics, and deploy AI models—all within a single, scalable platform.
    Learn More
  • 1
    DeepFaceLab

    DeepFaceLab

    The leading software for creating deepfakes

    DeepFaceLab is currently the world's leading software for creating deepfakes, with over 95% of deepfake videos created with DeepFaceLab. DeepFaceLab is an open-source deepfake system that enables users to swap the faces on images and on video. It offers an imperative and easy-to-use pipeline that even those without a comprehensive understanding of the deep learning framework or model implementation can use; and yet also provides a flexible and loose coupling structure for those who want to strengthen their own pipeline with other features without having to write complicated boilerplate code. DeepFaceLab can achieve results with high fidelity that are indiscernible by mainstream forgery detection approaches. Apart from seamlessly swapping faces, it can also de-age faces, replace the entire head, and even manipulate speech (though this will require some skill in video editing).
    Downloads: 289 This Week
    Last Update:
    See Project
  • 2
    Wan2.2

    Wan2.2

    Wan2.2: Open and Advanced Large-Scale Video Generative Model

    Wan2.2 is a major upgrade to the Wan series of open and advanced large-scale video generative models, incorporating cutting-edge innovations to boost video generation quality and efficiency. It introduces a Mixture-of-Experts (MoE) architecture that splits the denoising process across specialized expert models, increasing total model capacity without raising computational costs. Wan2.2 integrates meticulously curated cinematic aesthetic data, enabling precise control over lighting, composition, color tone, and more, for high-quality, customizable video styles. The model is trained on significantly larger datasets than its predecessor, greatly enhancing motion complexity, semantic understanding, and aesthetic diversity. Wan2.2 also open-sources a 5-billion parameter high-compression VAE-based hybrid text-image-to-video (TI2V) model that supports 720P video generation at 24fps on consumer-grade GPUs like the RTX 4090. It supports multiple video generation tasks including text-to-video.
    Downloads: 206 This Week
    Last Update:
    See Project
  • 3
    Wan2.1

    Wan2.1

    Wan2.1: Open and Advanced Large-Scale Video Generative Model

    Wan2.1 is a foundational open-source large-scale video generative model developed by the Wan team, providing high-quality video generation from text and images. It employs advanced diffusion-based architectures to produce coherent, temporally consistent videos with realistic motion and visual fidelity. Wan2.1 focuses on efficient video synthesis while maintaining rich semantic and aesthetic detail, enabling applications in content creation, entertainment, and research. The model supports text-to-video and image-to-video generation tasks with flexible resolution options suitable for various GPU hardware configurations. Wan2.1’s architecture balances generation quality and inference cost, paving the way for later improvements seen in Wan2.2 such as Mixture-of-Experts and enhanced aesthetics. It was trained on large-scale video and image datasets, providing generalization across diverse scenes and motion patterns.
    Downloads: 53 This Week
    Last Update:
    See Project
  • 4
    CogVideo

    CogVideo

    text and image to video generation: CogVideoX (2024) and CogVideo

    CogVideo is an open source text-/image-/video-to-video generation project that hosts the CogVideoX family of diffusion-transformer models and end-to-end tooling. The repo includes SAT and Diffusers implementations, turnkey demos, and fine-tuning pipelines (including LoRA) designed to run across a wide range of NVIDIA GPUs, from desktop cards (e.g., RTX 3060) to data-center hardware (A100/H100). Current releases cover CogVideoX-2B, CogVideoX-5B, and the upgraded CogVideoX1.5-5B variants, plus image-to-video (I2V) models, with options for BF16/FP16/FP32—and INT8 quantized inference via TorchAO for memory-constrained setups. The codebase emphasizes practical deployment: prompt-optimization utilities (LLM-assisted long-prompt expansion), Colab notebooks, a Gradio web app, and multiple performance knobs (tiling/slicing, CPU offload, torch.compile, multi-GPU, and FA3 backends via partner projects).
    Downloads: 29 This Week
    Last Update:
    See Project
  • Rezku Point of Sale Icon
    Rezku Point of Sale

    Designed for Real-World Restaurant Operations

    Rezku is an all-inclusive ordering platform and management solution for all types of restaurant and bar concepts. You can now get a fully custom branded downloadable smartphone ordering app for your restaurant exclusively from Rezku.
    Learn More
  • 5
    Open-Sora

    Open-Sora

    Open-Sora: Democratizing Efficient Video Production for All

    Open-Sora is an open-source initiative aimed at democratizing high-quality video production. It offers a user-friendly platform that simplifies the complexities of video generation, making advanced video techniques accessible to everyone. The project embraces open-source principles, fostering creativity and innovation in content creation. Open-Sora provides tools, models, and resources to create high-quality videos, aiming to lower the entry barrier for video production and support diverse content creators.
    Downloads: 27 This Week
    Last Update:
    See Project
  • 6
    HunyuanWorld-Voyager

    HunyuanWorld-Voyager

    RGBD video generation model conditioned on camera input

    HunyuanWorld-Voyager is a next-generation video diffusion framework developed by Tencent-Hunyuan for generating world-consistent 3D scene videos from a single input image. By leveraging user-defined camera paths, it enables immersive scene exploration and supports controllable video synthesis with high realism. The system jointly produces aligned RGB and depth video sequences, making it directly applicable to 3D reconstruction tasks. At its core, Voyager integrates a world-consistent video diffusion model with an efficient long-range world exploration engine powered by auto-regressive inference. To support training, the team built a scalable data engine that automatically curates large video datasets with camera pose estimation and metric depth prediction. As a result, Voyager delivers state-of-the-art performance on world exploration benchmarks while maintaining photometric, style, and 3D consistency.
    Downloads: 25 This Week
    Last Update:
    See Project
  • 7
    LTX-2

    LTX-2

    Python inference and LoRA trainer package for the LTX-2 audio–video

    LTX-2 is a powerful, open-source toolkit developed by Lightricks that provides a modular, high-performance base for building real-time graphics and visual effects applications. It is architected to give developers low-level control over rendering pipelines, GPU resource management, shader orchestration, and cross-platform abstractions so they can craft visually compelling experiences without starting from scratch. Beyond basic rendering scaffolding, LTX-2 includes optimized math libraries, resource loaders, utilities for texture and buffer handling, and integration points for native event loops and input systems. The framework targets both interactive graphical applications and media-rich experiences, making it a solid foundation for games, creative tools, or visualization systems that demand both performance and flexibility. While being low-level, it also provides sensible defaults and helper abstractions that reduce boilerplate and help teams maintain clear, maintainable code.
    Downloads: 25 This Week
    Last Update:
    See Project
  • 8
    MoneyPrinterTurbo

    MoneyPrinterTurbo

    Generate short videos with one click using AI LLM

    MoneyPrinterTurbo is an AI-driven tool that enables users to generate high-definition short videos with minimal input. By providing a topic or keyword, the system automatically creates video scripts, sources relevant media assets, adds subtitles, and incorporates background music, resulting in a polished video ready for distribution.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 9
    AutoClip

    AutoClip

    AI-powered video clipping and highlight generation

    AutoClip is an open-source, AI-powered video processing system designed to automate the extraction of “highlight” segments from full-length videos — ideal for creators who want to generate bite-sized clips, compilations, or highlight reels without manually sifting through hours of footage. The system supports downloading videos from major platforms (e.g. YouTube, Bilibili), or accepting local uploads, and then applies AI analysis to identify segments worth clipping based on content (e.g. high energy moments, speech, or other heuristics). Once highlights are identified, AutoClip can automatically cut those segments and optionally assemble them into a compilation, thus greatly reducing manual video editing effort. It uses a modern web application stack with a front end (React + TypeScript) for user interaction and a back end that handles downloading, processing, clipping, and queue management, allowing real-time progress feedback and easy deployment, e.g. via Docker.
    Downloads: 13 This Week
    Last Update:
    See Project
  • Axe Credit Portal - ACP- is axefinance’s future-proof AI-driven solution to digitalize the loan process from KYC to servicing, available as a locally hosted or cloud-based software. Icon
    Axe Credit Portal - ACP- is axefinance’s future-proof AI-driven solution to digitalize the loan process from KYC to servicing, available as a locally hosted or cloud-based software.

    Banks, lending institutions

    Founded in 2004, axefinance is a global market-leading software provider focused on credit risk automation for lenders looking to provide an efficient, competitive, and seamless omnichannel financing journey for all client segments (FI, Retail, Commercial, and Corporate.)
    Learn More
  • 10
    AI YouTube Shorts Generator

    AI YouTube Shorts Generator

    A python tool that uses GPT-4, FFmpeg, and OpenCV

    AI-YouTube-Shorts-Generator is a Python-based tool that automates the creation of short-form vertical video clips (“shorts”) from longer source videos — ideal for adapting content for platforms like YouTube Shorts, Instagram Reels, or TikTok. It analyzes input video (whether a local file or a YouTube URL), transcribes audio (with optional GPU-accelerated speech-to-text), uses an AI model to identify the most compelling or engaging segments, and then crops/resizes the video and applies subtitle overlays, producing a polished short video without manual editing. The tool streamlines multiple steps of the tedious short-form video workflow: highlight detection, clipping, subtitle generation, cropping to vertical 9:16 format, and final rendering — reducing hours of editing to a mostly automated pipeline. Because it supports both local and online video sources, it's flexible whether you're working with your own recorded content or repurposing existing longer-form videos.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 11
    Text2Video

    Text2Video

    Software tool that converts text to video for more engaging experience

    Text2Video is a software tool that converts text to video for more engaging learning experience. I started this project because during this semester, I have been given many reading assignments and I felt frustration in reading long text. For me, it was very time and energy-consuming to learn something through reading. So I imagined, "What if there was a tool that turns text into something more engaging such as a video, wouldn't it improve my learning experience?" I created a prototype web application that takes text as an input and generates a video as an output. I plan to further work on the project targeting young college students who are aged between 18 to 23 because they tend to prefer learning through videos over books based on the survey I found. The technologies I used for the project are HTML, CSS, Javascript, Node.js, CCapture.js, ffmpegserver.js, Amazon Polly, Python, Flask, gevent, spaCy, and Pixabay API.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 12
    LTX-Video

    LTX-Video

    Official repository for LTX-Video

    LTX-Video is a sophisticated multimedia processing framework from Lightricks designed to handle high-quality video editing, compositing, and transformation tasks with performance and scalability. It provides runtime components that efficiently decode, encode, and manipulate video streams, frame buffers, and audio tracks while exposing a rich API for building customized editing features like transitions, effects, color grading, and keyframe automation. The toolkit is built with both real-time and offline workflows in mind, enabling applications from consumer editing to professional content creation and batch processing. Internally optimized for multi-core processors and hardware acceleration where available, LTX-Video makes it feasible to work with high-resolution content and complex timelines without sacrificing responsiveness.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 13
    Make-A-Video - Pytorch (wip)

    Make-A-Video - Pytorch (wip)

    Implementation of Make-A-Video, new SOTA text to video generator

    Implementation of Make-A-Video, new SOTA text to video generator from Meta AI, in Pytorch. They combine pseudo-3d convolutions (axial convolutions) and temporal attention and show much better temporal fusion. The pseudo-3d convolutions isn't a new concept. It has been explored before in other contexts, say for protein contact prediction as "dimensional hybrid residual networks". The gist of the paper comes down to, take a SOTA text-to-image model (here they use DALL-E2, but the same learning points would easily apply to Imagen), make a few minor modifications for attention across time and other ways to skimp on the compute cost, do frame interpolation correctly, get a great video model out. Passing in images (if one were to pretrain on images first), both temporal convolution and attention will be automatically skipped. In other words, you can use this straightforwardly in your 2d Unet and then port it over to a 3d Unet once that phase of the training is done.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 14
    Phenaki - Pytorch

    Phenaki - Pytorch

    Implementation of Phenaki Video, which uses Mask GIT

    Implementation of Phenaki Video, which uses Mask GIT to produce text-guided videos of up to 2 minutes in length, in Pytorch. It will also combine another technique involving a token critic for potentially even better generations. A new paper suggests that instead of relying on the predicted probabilities of each token as a measure of confidence, one can train an extra critic to decide what to iteratively mask during sampling. This repository will also endeavor to allow the researcher to train on text-to-image and then text-to-video. Similarly, for unconditional training, the researcher should be able to first train on images and then fine tune on video.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 15
    ComfyUI-LTXVideo

    ComfyUI-LTXVideo

    LTX-Video Support for ComfyUI

    ComfyUI-LTXVideo is a bridge between ComfyUI’s node-based generative workflow environment and the LTX-Video multimedia processing framework, enabling creators to orchestrate complex video tasks within a visual graph paradigm. Instead of writing code to apply effects, transitions, edits, and data flows, users can assemble nodes that represent video inputs, transformations, and outputs, letting them prototype and automate video production pipelines visually. This integration empowers non-programmers and rapid-iteration teams to harness the performance of LTX-Video while maintaining the clarity and flexibility of a dataflow graph model. It supports nodes for common video operations like trimming, layering, color grading, and generative augmentations, making it suitable for everything from simple clip edits to complex sequences with conditional behavior.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    Video Diffusion - Pytorch

    Video Diffusion - Pytorch

    Implementation of Video Diffusion Models

    Implementation of Video Diffusion Models, Jonathan Ho's new paper extending DDPMs to Video Generation - in Pytorch. Implementation of Video Diffusion Models, Jonathan Ho's new paper extending DDPMs to Video Generation - in Pytorch. It uses a special space-time factored U-net, extending generation from 2D images to 3D videos. 14k for difficult moving mnist (converging much faster and better than NUWA) - wip. Any new developments for text-to-video synthesis will be centralized at Imagen-pytorch. For conditioning on text, they derived text embeddings by first passing the tokenized text through BERT-large. You can also directly pass in the descriptions of the video as strings, if you plan on using BERT-base for text conditioning. This repository also contains a handy Trainer class for training on a folder of gifs. Each gif must be of the correct dimensions image_size and num_frames.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 17
    HunyuanVideo

    HunyuanVideo

    HunyuanVideo: A Systematic Framework For Large Video Generation Model

    HunyuanVideo is a cutting-edge framework designed for large-scale video generation, leveraging advanced AI techniques to synthesize videos from various inputs. It is implemented in PyTorch, providing pre-trained model weights and inference code for efficient deployment. The framework aims to push the boundaries of video generation quality, incorporating multiple innovative approaches to improve the realism and coherence of the generated content. Release of FP8 model weights to reduce GPU memory usage / improve efficiency. Parallel inference code to speed up sampling, utilities and tests included.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    Story Flicks

    Story Flicks

    Generate high-definition story short videos with one click using AI

    Story Flicks is another open-source project in the AI-assisted video generation / editing space, focused on creating short, story-style videos from script or prompt inputs. It aims to let users generate high-definition short movies or video stories with minimal manual effort, using AI models under the hood to assemble visuals, timing, and possibly narration or subtitles. For creators who want to produce narrative short-form content — whether for social media, storytelling, or prototyping video ideas — story-flicks offers a lightweight, code-backed alternative to complex video editing suites. Because the project is open and modifiable, developers can customize the generation pipeline: adjust story structure, alter rendering parameters, tweak video quality or resolution, or integrate with other AI models (e.g. for audio, voice-over, or image-to-video). It’s especially useful as a starting template or experimentation ground for developers building automated content-creation tools.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    StoryTeller

    StoryTeller

    Multimodal AI Story Teller, built with Stable Diffusion, GPT, etc.

    A multimodal AI story teller, built with Stable Diffusion, GPT, and neural text-to-speech (TTS). Given a prompt as an opening line of a story, GPT writes the rest of the plot; Stable Diffusion draws an image for each sentence; a TTS model narrates each line, resulting in a fully animated video of a short story, replete with audio and visuals. To develop locally, install dev dependencies and install pre-commit hooks. This will automatically trigger linting and code quality checks before each commit. The final video will be saved as /out/out.mp4, alongside other intermediate images, audio files, and subtitles. For more advanced use cases, you can also directly interface with Story Teller in Python code.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    Aphantasia

    Aphantasia

    CLIP + FFT/DWT/RGB = text to image/video

    This is a collection of text-to-image tools, evolved from the artwork of the same name. Based on CLIP model and Lucent library, with FFT/DWT/RGB parameterizes (no-GAN generation). Illustrip (text-to-video with motion and depth) is added. DWT (wavelets) parameterization is added. Check also colabs below, with VQGAN and SIREN+FFM generators. Tested on Python 3.7 with PyTorch 1.7.1 or 1.8. Generating massive detailed textures, a la deepdream, fullHD/4K resolutions and above, various CLIP models (including multi-language from SBERT), continuous mode to process phrase lists (e.g. illustrating lyrics), pan/zoom motion with smooth interpolation. Direct RGB pixels optimization (very stable) depth-based 3D look (courtesy of deKxi, based on AdaBins), complex queries: text and/or image as main prompts, separate text prompts for style and to subtract (avoid) topics. Starting/resuming process from saved parameters or from an image.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    Recurrent Interface Network (RIN)

    Recurrent Interface Network (RIN)

    Implementation of Recurrent Interface Network (RIN)

    Implementation of Recurrent Interface Network (RIN), for highly efficient generation of images and video without cascading networks, in Pytorch. The author unawaredly reinvented the induced set-attention block from the set transformers paper. They also combine this with the self-conditioning technique from the Bit Diffusion paper, specifically for the latents. The last ingredient seems to be a new noise function based around the sigmoid, which the author claims is better than cosine scheduler for larger images. The big surprise is that the generations can reach this level of fidelity. Will need to verify this on my own machine. Additionally, we will try adding an extra linear attention on the main branch as well as self-conditioning in the pixel space. The insight of being able to self-condition on any hidden state of the network as well as the newly proposed sigmoid noise schedule are the two main findings.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    BWR Ai watermark remover

    BWR Ai watermark remover

    AI-powered tool to quickly remove watermarks from videos flawlessly

    Blue Wave Remover is an advanced AI-driven video watermark removal software designed to effortlessly eliminate logos, text, timestamps, and watermarks from video content. Utilizing cutting-edge computer vision and generative AI algorithms, it accurately detects and removes both static and moving watermarks while preserving the original video's quality, colors, and clarity. The program supports popular video formats and offers batch processing for fast and efficient removal on multiple files. Its intuitive interface features white and blue design elements for easy navigation, making it ideal for content creators, video editors, social media managers, and marketers. Blue Wave Remover enhances video visuals by removing unwanted logos and overlays, ensuring professional, clean footage for repurposing, presentations, and online sharing. Key functions include automatic watermark detection, AI-powered inpainting, background reconstruction, and seamless integration into existing workflows. Thi
    Leader badge
    Downloads: 9 This Week
    Last Update:
    See Project
  • 23
    VideoCrafter2

    VideoCrafter2

    Overcoming Data Limitations for High-Quality Video Diffusion Models

    VideoCrafter is an open-source video generation and editing toolbox designed to create high-quality video content. It features models for both text-to-video and image-to-video generation. The system is optimized for generating videos from textual descriptions or still images, leveraging advanced diffusion models. VideoCrafter2, an upgraded version, improves on its predecessor by enhancing motion dynamics and concept combinations, especially in low-data scenarios. Users can explore a wide range of creative possibilities, producing cinematic videos that combine artistic styles and real-world scenes.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 24
    HunyuanVideo-I2V

    HunyuanVideo-I2V

    A Customizable Image-to-Video Model based on HunyuanVideo

    HunyuanVideo-I2V is a customizable image-to-video generation framework developed by Tencent, extending the capabilities of HunyuanVideo. It allows for high-quality video creation from still images, using PyTorch and providing pre-trained model weights, inference code, and customizable training options. The system includes a LoRA training code for adding special effects and enhancing video realism, aiming to offer versatile and scalable solutions for generating videos from static image inputs.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25
    Amiga Memories

    Amiga Memories

    A walk along memory lane

    Amiga Memories is a project (started & released in 2013) that aims to make video programmes that can be published on the internet. The images and sound produced by Amiga Memories are 100% automatically generated. The generator itself is implemented in Squirrel, the 3D rendering is done on GameStart 3D. An Amiga Memories video is mostly based on a narrative. The purpose of the script is to define the spoken and written content. The spoken text will be read by a voice synthesizer (Text To Speech or TTS), the written text is simply drawn on the image as subtitles. Here, in addition to the spoken & written narration, the script controls the camera movements as well as the LED activity of the computer. Amiga Memories' video images are computed by the GameStart 3D engine (pre-HARFANG 3D). Although the 3D assets are designed to be played back in real-time with a variable framerate, the engine is capable of breaking down the video sequence into the 30th or 60th of a second, as TGA files.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next