AI Text Generators for Linux

View 12 business solutions

Browse free open source AI Text Generators and projects for Linux below. Use the toggles on the left to filter open source AI Text Generators by OS, license, language, programming language, and project status.

  • Enterprise-grade ITSM, for every business Icon
    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity.

    Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
    Try it Free
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 1
    Text Generation Web UI

    Text Generation Web UI

    A gradio web UI for running Large Language Models like LLaMA

    A gradio web UI for running Large Language Models like LLaMA, llama.cpp, GPT-J, Pythia, OPT, and GALACTICA. Dropdown menu for switching between models. Notebook mode that resembles OpenAI's playground. Chat mode for conversation and role playing. Instruct mode compatible with Alpaca and Open Assistant formats. Nice HTML output for GPT-4chan. Markdown output for GALACTICA, including LaTeX rendering. Custom chat characters. Advanced chat features (send images, get audio responses with TTS). Very efficient text streaming. Parameter presets, 8-bit mode. Layers splitting across GPU(s), CPU, and disk. CPU mode, FlexGen, DeepSpeed ZeRO-3, API with streaming and without streaming. LLaMA model, including 4-bit GPTQ. RWKV model, LoRA (loading and training), Softprompts, and extensions.
    Downloads: 29 This Week
    Last Update:
    See Project
  • 2
    KoboldCpp

    KoboldCpp

    Run GGUF models easily with a UI or API. One File. Zero Install.

    KoboldCpp is an easy-to-use AI text-generation software for GGML and GGUF models, inspired by the original KoboldAI. It's a single self-contained distributable that builds off llama.cpp and adds many additional powerful features.
    Leader badge
    Downloads: 254 This Week
    Last Update:
    See Project
  • 3
    Intelligent Java

    Intelligent Java

    Integrate with the latest language models, image generation and speech

    Intelligent java (IntelliJava) is the ultimate tool to integrate with the latest language models and deep learning frameworks using java. The library provides an intuitive functions for sending input to models like ChatGPT and DALL·E, and receiving generated text, speech or images. With just a few lines of code, you can easily access the power of cutting-edge AI models to enhance your projects. Access ChatGPT, GPT3 to generate text and DALL·E to generate images. OpenAI is preferred for quality results without tuning. Generate text; Cohere allows you to generate a language model to suit your specific needs. Generate audio from text; Access DeepMind’s speech models. The only dependencies is GSON. Required to add manually when using IntelliJava jar. However, if you imported this repo through Maven, it will handle the dependencies.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    node-markov-generator

    node-markov-generator

    Generates simple sentences based on given text corpus

    This simple generator emits short sentences based on the given text corpus using a Markov chain. To put it simply, it works kinda like word suggestions that you have while typing messages in your smartphone. It analyzes which word is followed by which in the given corpus and how often. And then, for any given word it tries to predict what the next one might be. Here you create an instance of TextGenerator passing an array of strings to it - it represents your text corpus which will be used to "train" the generator. The more strings/sentences you pass, the more diverse results you get, so you'd better pass like hundreds of them, or even more! If you have your texts in an external file, you can pass the path to it as an argument for TextGenerator's constructor.
    Downloads: 3 This Week
    Last Update:
    See Project
  • The Ultimate Quiz Maker & Engagement Platform Icon
    The Ultimate Quiz Maker & Engagement Platform

    Powering publishers, brands, and sports teams with 30+ interactive content types. Maximize engagement and revenue with Riddle.

    Riddle is an online platform for creating interactive content such as quizzes, surveys, personality tests, prediction games, and leaderboards. Our customers create content on our platform and then embed it on their website. The goal? Increased engagement, lead generation, segmentation, and content monetization - all 100% GDPR compliant.
    Try for free
  • 5
    CPT

    CPT

    CPT: A Pre-Trained Unbalanced Transformer

    A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation. We replace the old BERT vocabulary with a larger one of size 51271 built from the training data, in which we 1) add missing 6800+ Chinese characters (most of them are traditional Chinese characters); 2) remove redundant tokens (e.g. Chinese character tokens with ## prefix); 3) add some English tokens to reduce OOV. Position Embeddings We extend the max_position_embeddings from 512 to 1024. We initialize the new version of models with the old version of checkpoints with vocabulary alignment. Token embeddings found in the old checkpoints are copied. And other newly added parameters are randomly initialized. We further train the new CPT & Chinese BART 50K steps with batch size 2048, max-seq-length 1024, peak learning rate 2e-5, and warmup ratio 0.1. Aiming to unify both NLU and NLG tasks, We propose a novel Chinese Pre-trained Un-balanced Transformer (CPT).
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    Pipeline for training Language Models

    Pipeline for training Language Models

    Pipeline for training Language Models using PyTorch.

    Pipeline for training Language Models using PyTorch. Inspired by Yandex Data School NLP Course (week 03: Language Modeling) Prepared text file with space-separated words on each line.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    TextBox

    TextBox

    A text generation library with pre-trained language models github.com

    TextBox 2.0 is an up-to-date text generation library based on Python and PyTorch focusing on building a unified and standardized pipeline for applying pre-trained language models to text generation. From a task perspective, we consider 13 common text generation tasks such as translation, story generation, and style transfer, and their corresponding 83 widely-used datasets. From a model perspective, we incorporate 47 pre-trained language models/modules covering the categories of general, translation, Chinese, dialogue, controllable, distilled, prompting, and lightweight models (modules). From a training perspective, we support 4 pre-training objectives and 4 efficient and robust training strategies, such as distributed data parallel and efficient generation. Compared with the previous version of TextBox, this extension mainly focuses on building a unified, flexible, and standardized framework for better supporting PLM-based text generation models.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    gpt-j-api

    gpt-j-api

    API for the GPT-J language mode. Including a FastAPI backend

    An API to interact with the GPT-J language model and variants! You can use and test the model in two different ways. These are the endpoints of the public API and require no authentication. Just SSH into a TPU VM. This code was tested on both the v2-8 and v3-8 variants.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    hfapigo

    hfapigo

    Unofficial (Golang) Go bindings for the Hugging Face Inference API

    (Golang) Go bindings for the Hugging Face Inference API. Directly call any model available in the Model Hub. An API key is required for authorized access. To get one, create a Hugging Face profile.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Test your software product anywhere in the world Icon
    Test your software product anywhere in the world

    Get feedback from real people across 190+ countries with the devices, environments, and payment instruments you need for your perfect test.

    Global App Testing is a managed pool of freelancers used by Google, Meta, Microsoft, and other world-beating software companies.
    Try us today.
  • 10
    onnxt5

    onnxt5

    Summarization, translation, sentiment-analysis, text-generation, etc.

    Summarization, translation, sentiment analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX. This package is still in the alpha stage, therefore some functionalities such as beam searches are still in development. The simplest way to get started for generation is to use the default pre-trained version of T5 on ONNX included in the package. Please note that the first time you call get_encoder_decoder_tokenizer, the models are being downloaded which might take a minute or two. Other tasks just require to change the prefix in your prompt, for instance for summarization. Run any of the T5 trained tasks in a line (translation, summarization, sentiment analysis, completion, generation) Export your own T5 models to ONNX easily. Utility functions to generate what you need quickly. Up to 4X speedup compared to PyTorch execution for smaller contexts.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    AI Atelier

    AI Atelier

    Based on the Disco Diffusion, version of the AI art creation software

    Based on the Disco Diffusion, we have developed a Chinese & English version of the AI art creation software "AI Atelier". We offer both Text-To-Image models (Disco Diffusion and VQGAN+CLIP) and Text-To-Text (GPT-J-6B and GPT-NEOX-20B) as options. Making available complete source code of licensed works and modifications, which include larger works using a licensed work, under the same license. Copyright and license notices must be preserved. When a modified version is used to provide a service over a network, the complete source code of the modified version must be made available. Create 2D and 3D animations and not only still frames (from Disco Diffusion v5 and VQGAN Animations). Input audio and images for generation instead of just text. Simplify tool setup process on colab, and enable ‘one-click’ sharing of the generated link to other users. Experiment with the possibilities for multi-user access to the same link.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    AI Chatbots based on GPT Architecture

    AI Chatbots based on GPT Architecture

    Training & Implementation of chatbots leveraging GPT-like architecture

    Training & Implementation of chatbots leveraging GPT-like architecture with the aitextgen package to enable dynamic conversations. It sure seems like there are a lot of text-generation chatbots out there, but it's hard to find a python package or model that is easy to tune around a simple text file of message data. This repo is a simple attempt to help solve that problem. ai-msgbot covers the practical use case of building a chatbot that sounds like you (or some dataset/persona you choose) by training a text-generation model to generate conversation in a consistent structure. This structure is then leveraged to deploy a chatbot that is a "free-form" model that consistently replies like a human. Some of the trained models can be interacted with through the HuggingFace spaces and model inference APIs on the ETHZ Analytics Organization page on huggingface.co.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Minimal text diffusion

    Minimal text diffusion

    A minimal implementation of diffusion models for text generation

    A minimal implementation of diffusion models of text: learns a diffusion model of a given text corpus, allowing to generate text samples from the learned model. The main idea was to retain just enough code to allow training a simple diffusion model and generating samples, remove image-related terms, and make it easier to use. To train a model, run scripts/train.sh. By default, this will train a model on the simple corpus. However, you can change this to any text file using the --train_data argument. Note that you may have to increase the sequence length (--seq_len) if your corpus is longer than the simple corpus. The other default arguments are set to match the best setting I found for the simple corpus.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Regex

    Regex

    Generate matching and non matching strings based on regex patterns

    Generate matching and non-matching strings. This is a java library that, given a regex pattern, allows to generation of matching strings. Iterate through unique matching strings. Generate not matching strings. Follow the link to Online IDE with created project: JDoodle. Enter your pattern and see the results. By design a+, a* and a{n,} patterns in regex imply an infinite number of characters should be matched. When generating data, that would mean values of infinite length might be generated. It is highly doubtful anyone would require a string of infinite length, thus I've artificially limited repetitions in such patterns to 100 symbols when generating random values. Use a{n,m} if you require some specific number of repetitions. It is suggested to avoid using such infinite patterns to generate data based on regex.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Texar-PyTorch

    Texar-PyTorch

    Integrating the Best of TF into PyTorch, for Machine Learning

    Texar-PyTorch is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides a library of easy-to-use ML modules and functionalities for composing whatever models and algorithms. The tool is designed for both researchers and practitioners for fast prototyping and experimentation. Texar-PyTorch was originally developed and is actively contributed by Petuum and CMU in collaboration with other institutes. A mirror of this repository is maintained by Petuum Open Source. Texar-PyTorch integrates many of the best features of TensorFlow into PyTorch, delivering highly usable and customizable modules superior to PyTorch native ones. Texar-PyTorch (this repo) and Texar-TF have mostly the same interfaces. Both further combine the best design of TF and PyTorch. Data processing, model architectures, loss functions, training and inference algorithms, evaluation, etc.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    commit-autosuggestions

    commit-autosuggestions

    A tool that AI automatically recommends commit messages

    This is implementation of CommitBERT: Commit Message Generation Using Pre-Trained Programming Language Model. CommitBERT is accepted in ACL workshop : NLP4Prog. Have you ever hesitated to write a commit message? Now get a commit message from Artificial Intelligence! CodeBERT: A Pre-Trained Model for Programming and Natural Languages introduces a pre-trained model in a combination of Program Language and Natural Language(PL-NL). It also introduces the problem of converting code into natural language (Code Documentation Generation). We can use CodeBERT to create a model that generates a commit message when code is added. However, most code changes are not made only by add of the code, and some parts of the code are deleted. We plan to slowly conquer languages that are not currently supported. To run this project, you need a flask-based inference server (GPU) and a client (commit module). If you don't have a GPU, don't worry, you can use it through Google Colab.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    gpt2-client

    gpt2-client

    Easy-to-use TensorFlow Wrapper for GPT-2 117M, 345M, 774M, etc.

    GPT-2 is a Natural Language Processing model developed by OpenAI for text generation. It is the successor to the GPT (Generative Pre-trained Transformer) model trained on 40GB of text from the internet. It features a Transformer model that was brought to light by the Attention Is All You Need paper in 2017. The model has 4 versions - 124M, 345M, 774M, and 1558M - that differ in terms of the amount of training data fed to it and the number of parameters they contain. Finally, gpt2-client is a wrapper around the original gpt-2 repository that features the same functionality but with more accessiblity, comprehensibility, and utilty. You can play around with all four GPT-2 models in less than five lines of code. Install client via pip. The generation options are highly flexible. You can mix and match based on what kind of text you need generated, be it multiple chunks or one at a time with prompts.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    node-red-contrib-custom-chatgpt
    A Node-RED node that interacts with OpenAI machine learning models like "ChatGPT". Install with the built-in Node-RED Palette manager. When editing the properties of the node, to get your OPENAI_API_KEY log in to ChatGPT. Create a new secret key" then copy and paste the "API key" into the node API_KEY property value. msg.payload should be a well-written prompt that provides enough information for the model to know what you want and how it should respond. Its success generally depends on the complexity of the task and quality of your prompt. A good rule of thumb is to think about how you would write a word problem for a middle schooler to solve. msg.payload should be a well-written prompt that provides enough information for the model to know what you want and how it should respond.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19

    LegacyInsight

    Legacy reverse engineering tool

    LegacyInsight is an AI-powered reverse engineering platform that transforms legacy software systems into comprehensible business logic. Using cutting-edge GenAI, it analyzes legacy and extracts core operations, business rules, and data transformations—all translated into natural language. LegacyInsight supports enterprise-grade systems built on Java, COBOL, NET and other legacy stacks, helping organizations reclaim understanding of business-critical code.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 20
    Accelerated Text

    Accelerated Text

    Accelerated Text is a no-code natural language generation platform

    A picture is worth a thousand words. Or is it? Tables, charts, pictures are all useful in understanding our data but often we need a description – a story to tell us what are we looking at. Accelerated Text is a natural language generation tool which allows you to define data descriptions and then generates multiple versions of those descriptions varying in wording and structure. Accelerated Text is a no-code natural language generation platform. It will help you construct document plans which define how your data is converted to textual descriptions. With Accelerated Text you can use such data to generate text for your business reports, your e-commerce platform or your customer support system. Data descriptions require precision. Accelerated Text follows the principle of this strict adherence to data-bound text generation. Via its user interface, it provides instruments to define how the data should be translated into a descriptive text.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Ad Generator

    Ad Generator

    Professional text randomizer and ad generator by Airat Khalitov

    Professional text randomizer and ad generator by Airat Khalitov / Professional text randomizer and ad generator. Author: Airat Halitov. Visit 'Plugins, Add New', click 'Upload Plugin', upload the file 'ad-generator.zip', and activate Ad Generator from your Plugins page. Add [ad_generator] shortcode to WordPress Page. Create a new WordPress Page, add [ad_generator] shortcode and save. Go to the page and use the ad generator. This is a program for industrial creation of pseudo-unique content. Used, for example, when registering a site in multiple directories. So that in each directory the site is described by text that is unique from the point of view of search engines. Unlike similar tools (synonymizers, dorgens), it allows you to maximize the readability of the resulting texts.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Aida Lib

    Aida Lib

    Aida is a language agnostic library for text generation

    Aida is a language-agnostic library for text generation. When using Aida, first you compose a tree of operations on your text that includes conditions via branches and other control flow. Later, you fill the tree with data and render the text. A building block is a variable class: Var. Use it to represent a value that you want to control later. A variable can hold numbers (e.g. float, int) or strings. You can create branches and complex logic with Branch. The context, represented by the class Ctx, is useful to create rules that depends on what has been written before. Each object or literal that is passed to Aida is remembered by the context. Creating a reference expression is a common use-case, so we have a helper function called create_ref. You can compose operations on your text with some handy operators.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    BNFGen

    BNFGen

    Generates random text based on context-free grammars defined in BNF

    BNFGen generates random text based on context-free grammar. You give it a file with your grammar, defined using BNF-like syntax, it gives you a string that follows that grammar. BNFGen is a CLI tool, an OCaml library. There are also official JS bindings available via NPM. Project goals are to make it easy to write and share grammar and give the user total control of and insight into the generation process. BNFGen provides a "DSL" for grammar definitions. It's a familiar BNF-like syntax with a few additions. One problem with using straight BNF for driving language generators is that you have no control over the process. BNFGen adds two features to fix that. The canonical way to express repetition in BNF is to use a self-referential recursive rule. In classic BNF, that can easily lead to the process terminating to early, since there's a 50% chance that it will take the non-recursive alternative.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Basaran

    Basaran

    Basaran, an open-source alternative to the OpenAI text completion API

    Basaran is an open-source alternative to the OpenAI text completion API. It provides a compatible streaming API for your Hugging Face Transformers-based text generation models. The open source community will eventually witness the Stable Diffusion moment for large language models (LLMs), and Basaran allows you to replace OpenAI's service with the latest open-source model to power your application without modifying a single line of code. Stream generation using various decoding strategies. Support both decoder-only and encoder-decoder models. Detokenizer that handles surrogates and whitespace. Multi-GPU support with optional 8-bit quantization. Real-time partial progress using server-sent events. Compatible with OpenAI API and client libraries. Comes with a fancy web-based playground. Docker images are available on Docker Hub and GitHub Packages.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    CRSLab

    CRSLab

    CRSLab is an open-source toolkit

    CRSLab is an open-source toolkit for building Conversational Recommender System (CRS). It is developed based on Python and PyTorch. CRSLab has the following highlights. Comprehensive benchmark models and datasets: We have integrated commonly-used 6 datasets and 18 models, including graph neural network and pre-training models such as R-GCN, BERT and GPT-2. We have preprocessed these datasets to support these models, and release for downloading. Extensive and standard evaluation protocols: We support a series of widely-adopted evaluation protocols for testing and comparing different CRS. General and extensible structure: We design a general and extensible structure to unify various conversational recommendation datasets and models, in which we integrate various built-in interfaces and functions for quickly development. Easy to get started: We provide simple yet flexible configuration for new researchers to quickly start in our library. Human-machine interaction interfaces.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.