Browse free open source AI Models and projects for Linux below. Use the toggles on the left to filter open source AI Models by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Photo and Video Editing APIs and SDKs Icon
    Photo and Video Editing APIs and SDKs

    Trusted by 150 million+ creators and businesses globally

    Unlock Picsart's full editing suite by embedding our Editor SDK directly into your platform. Offer your users the power of a full design suite without leaving your site.
    Learn More
  • 1
    GLM-4.5

    GLM-4.5

    GLM-4.5: Open-source LLM for intelligent agents by Z.ai

    GLM-4.5 is a cutting-edge open-source large language model designed by Z.ai for intelligent agent applications. The flagship GLM-4.5 model has 355 billion total parameters with 32 billion active parameters, while the compact GLM-4.5-Air version offers 106 billion total parameters and 12 billion active parameters. Both models unify reasoning, coding, and intelligent agent capabilities, providing two modes: a thinking mode for complex reasoning and tool usage, and a non-thinking mode for immediate responses. They are released under the MIT license, allowing commercial use and secondary development. GLM-4.5 achieves strong performance on 12 industry-standard benchmarks, ranking 3rd overall, while GLM-4.5-Air balances competitive results with greater efficiency. The models support FP8 and BF16 precision, and can handle very large context windows of up to 128K tokens. Flexible inference is supported through frameworks like vLLM and SGLang with tool-call and reasoning parsers included.
    Downloads: 663 This Week
    Last Update:
    See Project
  • 2
    GLM-4.6

    GLM-4.6

    Agentic, Reasoning, and Coding (ARC) foundation models

    GLM-4.6 is the latest iteration of Zhipu AI’s foundation model, delivering significant advancements over GLM-4.5. It introduces an extended 200K token context window, enabling more sophisticated long-context reasoning and agentic workflows. The model achieves superior coding performance, excelling in benchmarks and practical coding assistants such as Claude Code, Cline, Roo Code, and Kilo Code. Its reasoning capabilities have been strengthened, including improved tool usage during inference and more effective integration within agent frameworks. GLM-4.6 also enhances writing quality, producing outputs that better align with human preferences and role-playing scenarios. Benchmark evaluations demonstrate that it not only outperforms GLM-4.5 but also rivals leading global models such as DeepSeek-V3.1-Terminus and Claude Sonnet 4.
    Downloads: 521 This Week
    Last Update:
    See Project
  • 3
    Wan2.2

    Wan2.2

    Wan2.2: Open and Advanced Large-Scale Video Generative Model

    Wan2.2 is a major upgrade to the Wan series of open and advanced large-scale video generative models, incorporating cutting-edge innovations to boost video generation quality and efficiency. It introduces a Mixture-of-Experts (MoE) architecture that splits the denoising process across specialized expert models, increasing total model capacity without raising computational costs. Wan2.2 integrates meticulously curated cinematic aesthetic data, enabling precise control over lighting, composition, color tone, and more, for high-quality, customizable video styles. The model is trained on significantly larger datasets than its predecessor, greatly enhancing motion complexity, semantic understanding, and aesthetic diversity. Wan2.2 also open-sources a 5-billion parameter high-compression VAE-based hybrid text-image-to-video (TI2V) model that supports 720P video generation at 24fps on consumer-grade GPUs like the RTX 4090. It supports multiple video generation tasks including text-to-video.
    Downloads: 120 This Week
    Last Update:
    See Project
  • 4
    Piper TTS

    Piper TTS

    A fast, local neural text to speech system

    Piper is a fast, local neural text-to-speech (TTS) system developed by the Rhasspy team. Optimized for devices like the Raspberry Pi 4, Piper enables high-quality speech synthesis without relying on cloud services, making it ideal for privacy-conscious applications. It utilizes ONNX models trained with VITS to deliver natural-sounding voices across various languages and accents. Piper is particularly suited for offline voice assistants and embedded systems.
    Downloads: 107 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    llama.cpp

    llama.cpp

    Port of Facebook's LLaMA model in C/C++

    The llama.cpp project enables the inference of Meta's LLaMA model (and other models) in pure C/C++ without requiring a Python runtime. It is designed for efficient and fast model execution, offering easy integration for applications needing LLM-based capabilities. The repository focuses on providing a highly optimized and portable implementation for running large language models directly within C/C++ environments.
    Downloads: 60 This Week
    Last Update:
    See Project
  • 6
    Qwen3

    Qwen3

    Qwen3 is the large language model series developed by Qwen team

    Qwen3 is a cutting-edge large language model (LLM) series developed by the Qwen team at Alibaba Cloud. The latest updated version, Qwen3-235B-A22B-Instruct-2507, features significant improvements in instruction-following, reasoning, knowledge coverage, and long-context understanding up to 256K tokens. It delivers higher quality and more helpful text generation across multiple languages and domains, including mathematics, coding, science, and tool usage. Various quantized versions, tools/pipelines provided for inference using quantized formats (e.g. GGUF, etc.). Coverage for many languages in training and usage, alignment with human preferences in open-ended tasks, etc.
    Downloads: 56 This Week
    Last Update:
    See Project
  • 7
    DeepSeek R1

    DeepSeek R1

    Open-source, high-performance AI model with advanced reasoning

    DeepSeek-R1 is an open-source large language model developed by DeepSeek, designed to excel in complex reasoning tasks across domains such as mathematics, coding, and language. DeepSeek R1 offers unrestricted access for both commercial and academic use. The model employs a Mixture of Experts (MoE) architecture, comprising 671 billion total parameters with 37 billion active parameters per token, and supports a context length of up to 128,000 tokens. DeepSeek-R1's training regimen uniquely integrates large-scale reinforcement learning (RL) without relying on supervised fine-tuning, enabling the model to develop advanced reasoning capabilities. This approach has resulted in performance comparable to leading models like OpenAI's o1, while maintaining cost-efficiency. To further support the research community, DeepSeek has released distilled versions of the model based on architectures such as LLaMA and Qwen.
    Downloads: 55 This Week
    Last Update:
    See Project
  • 8
    DeepSeek-OCR

    DeepSeek-OCR

    Contexts Optical Compression

    DeepSeek-OCR is an open-source optical character recognition solution built as part of the broader DeepSeek AI vision-language ecosystem. It is designed to extract text from images, PDFs, and scanned documents, and integrates with multimodal capabilities that understand layout, context, and visual elements beyond raw character recognition. The system treats OCR not simply as “read the text” but as “understand what the text is doing in the image”—for example distinguishing captions from body text, interpreting tables, or recognizing handwritten versus printed words. It supports local deployment, enabling organizations concerned about privacy or latency to run the pipeline on-premises rather than send sensitive documents to third-party cloud services. The codebase is written in Python with a focus on modularity: you can swap preprocessing, recognition, and post-processing components as needed for custom workflows.
    Downloads: 53 This Week
    Last Update:
    See Project
  • 9
    DeepSeek-V3

    DeepSeek-V3

    Powerful AI language model (MoE) optimized for efficiency/performance

    DeepSeek-V3 is a robust Mixture-of-Experts (MoE) language model developed by DeepSeek, featuring a total of 671 billion parameters, with 37 billion activated per token. It employs Multi-head Latent Attention (MLA) and the DeepSeekMoE architecture to enhance computational efficiency. The model introduces an auxiliary-loss-free load balancing strategy and a multi-token prediction training objective to boost performance. Trained on 14.8 trillion diverse, high-quality tokens, DeepSeek-V3 underwent supervised fine-tuning and reinforcement learning to fully realize its capabilities. Evaluations indicate that it outperforms other open-source models and rivals leading closed-source models, achieving this with a training duration of 55 days on 2,048 Nvidia H800 GPUs, costing approximately $5.58 million.
    Downloads: 31 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    HunyuanWorld-Voyager

    HunyuanWorld-Voyager

    RGBD video generation model conditioned on camera input

    HunyuanWorld-Voyager is a next-generation video diffusion framework developed by Tencent-Hunyuan for generating world-consistent 3D scene videos from a single input image. By leveraging user-defined camera paths, it enables immersive scene exploration and supports controllable video synthesis with high realism. The system jointly produces aligned RGB and depth video sequences, making it directly applicable to 3D reconstruction tasks. At its core, Voyager integrates a world-consistent video diffusion model with an efficient long-range world exploration engine powered by auto-regressive inference. To support training, the team built a scalable data engine that automatically curates large video datasets with camera pose estimation and metric depth prediction. As a result, Voyager delivers state-of-the-art performance on world exploration benchmarks while maintaining photometric, style, and 3D consistency.
    Downloads: 25 This Week
    Last Update:
    See Project
  • 11
    Wan2.1

    Wan2.1

    Wan2.1: Open and Advanced Large-Scale Video Generative Model

    Wan2.1 is a foundational open-source large-scale video generative model developed by the Wan team, providing high-quality video generation from text and images. It employs advanced diffusion-based architectures to produce coherent, temporally consistent videos with realistic motion and visual fidelity. Wan2.1 focuses on efficient video synthesis while maintaining rich semantic and aesthetic detail, enabling applications in content creation, entertainment, and research. The model supports text-to-video and image-to-video generation tasks with flexible resolution options suitable for various GPU hardware configurations. Wan2.1’s architecture balances generation quality and inference cost, paving the way for later improvements seen in Wan2.2 such as Mixture-of-Experts and enhanced aesthetics. It was trained on large-scale video and image datasets, providing generalization across diverse scenes and motion patterns.
    Downloads: 25 This Week
    Last Update:
    See Project
  • 12
    gpt-oss

    gpt-oss

    gpt-oss-120b and gpt-oss-20b are two open-weight language models

    gpt-oss is OpenAI’s open-weight family of large language models designed for powerful reasoning, agentic workflows, and versatile developer use cases. The series includes two main models: gpt-oss-120b, a 117-billion parameter model optimized for general-purpose, high-reasoning tasks that can run on a single H100 GPU, and gpt-oss-20b, a lighter 21-billion parameter model ideal for low-latency or specialized applications on smaller hardware. Both models use a native MXFP4 quantization for efficient memory use and support OpenAI’s Harmony response format, enabling transparent full chain-of-thought reasoning and advanced tool integrations such as function calling, browsing, and Python code execution. The repository provides multiple reference implementations—including PyTorch, Triton, and Metal—for educational and experimental use, as well as example clients and tools like a terminal chat app and a Responses API server.
    Downloads: 25 This Week
    Last Update:
    See Project
  • 13
    Qwen3-VL

    Qwen3-VL

    Qwen3-VL, the multimodal large language model series by Alibaba Cloud

    Qwen3-VL is the latest multimodal large language model series from Alibaba Cloud’s Qwen team, designed to integrate advanced vision and language understanding. It represents a major upgrade in the Qwen lineup, with stronger text generation, deeper visual reasoning, and expanded multimodal comprehension. The model supports dense and Mixture-of-Experts (MoE) architectures, making it scalable from edge devices to cloud deployments, and is available in both instruction-tuned and reasoning-enhanced variants. Qwen3-VL is built for complex tasks such as GUI automation, multimodal coding (converting images or videos into HTML, CSS, JS, or Draw.io diagrams), long-context reasoning with support up to 1M tokens, and comprehensive video understanding. It also brings advanced perception capabilities, including spatial grounding, object recognition, OCR across 32 languages, and robust handling of challenging inputs like low-light or distorted text.
    Downloads: 18 This Week
    Last Update:
    See Project
  • 14
    DeepSeek-V3.2-Exp

    DeepSeek-V3.2-Exp

    An experimental version of DeepSeek model

    DeepSeek-V3.2-Exp is an experimental release of the DeepSeek model family, intended as a stepping stone toward the next generation architecture. The key innovation in this version is DeepSeek Sparse Attention (DSA), a sparse attention mechanism that aims to optimize training and inference efficiency in long-context settings without degrading output quality. According to the authors, they aligned the training setup of V3.2-Exp with V3.1-Terminus so that benchmark results remain largely comparable, even though the internal attention mechanism changes. In public evaluations across a variety of reasoning, code, and question-answering benchmarks (e.g. MMLU, LiveCodeBench, AIME, Codeforces, etc.), V3.2-Exp shows performance very close to or in some cases matching that of V3.1-Terminus. The repository includes tools and kernels to support the new sparse architecture—for instance, CUDA kernels, logit indexers, and open-source modules like FlashMLA and DeepGEMM are invoked for performance.
    Downloads: 17 This Week
    Last Update:
    See Project
  • 15
    Qwen

    Qwen

    The official repo of Qwen chat & pretrained large language model

    Qwen is a series of large language models developed by Alibaba Cloud, consisting of various pretrained versions like Qwen-1.8B, Qwen-7B, Qwen-14B, and Qwen-72B. These models, which range from smaller to larger configurations, are designed for a wide range of natural language processing tasks. They are openly available for research and commercial use, with Qwen's code and model weights shared on GitHub. Qwen's capabilities include text generation, comprehension, and conversation, making it a versatile tool for developers looking to integrate advanced AI functionalities into their applications.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 16
    Qwen3-Coder

    Qwen3-Coder

    Qwen3-Coder is the code version of Qwen3

    Qwen3-Coder is the latest and most powerful agentic code model developed by the Qwen team at Alibaba Cloud. Its flagship version, Qwen3-Coder-480B-A35B-Instruct, features a massive 480 billion-parameter Mixture-of-Experts architecture with 35 billion active parameters, delivering top-tier performance on coding and agentic tasks. This model sets new state-of-the-art benchmarks among open models for agentic coding, browser-use, and tool-use, matching performance comparable to leading models like Claude Sonnet. Qwen3-Coder supports an exceptionally long context window of 256,000 tokens, extendable to 1 million tokens using Yarn, enabling repository-scale code understanding and generation. It is capable of handling 358 programming languages, from common to niche, making it versatile for a wide range of development environments. The model integrates a specially designed function call format and supports popular platforms such as Qwen Code and CLINE for agentic coding workflows.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 17
    ChatGLM.cpp

    ChatGLM.cpp

    C++ implementation of ChatGLM-6B & ChatGLM2-6B & ChatGLM3 & GLM4(V)

    ChatGLM.cpp is a C++ implementation of the ChatGLM-6B model, enabling efficient local inference without requiring a Python environment. It is optimized for running on consumer hardware.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 18
    Demucs

    Demucs

    Code for the paper Hybrid Spectrogram and Waveform Source Separation

    Demucs (Deep Extractor for Music Sources) is a deep-learning framework for music source separation—extracting individual instrument or vocal tracks from a mixed audio file. The system is based on a U-Net-like convolutional architecture combined with recurrent and transformer elements to capture both short-term and long-term temporal structure. It processes raw waveforms directly rather than spectrograms, allowing for higher-quality reconstruction and fewer artifacts in separated tracks. The repository includes pretrained models for common tasks such as isolating vocals, drums, bass, and accompaniment from stereo music, achieving state-of-the-art results in benchmarks like MUSDB18. Demucs supports GPU-accelerated inference and can process multi-channel audio with chunked streaming for real-time or batch operation. It also provides training scripts and utilities to fine-tune on custom datasets, along with remixing and enhancement tools.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 19
    llama.cpp Python Bindings

    llama.cpp Python Bindings

    Python bindings for llama.cpp

    llama-cpp-python provides Python bindings for llama.cpp, enabling the integration of LLaMA (Large Language Model Meta AI) language models into Python applications. This facilitates the use of LLaMA's capabilities in natural language processing tasks within Python environments.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 20
    DeepSeek Coder

    DeepSeek Coder

    DeepSeek Coder: Let the Code Write Itself

    DeepSeek-Coder is a series of code-specialized language models designed to generate, complete, and infill code (and mixed code + natural language) with high fluency in both English and Chinese. The models are trained from scratch on a massive corpus (~2 trillion tokens), of which about 87% is code and 13% is natural language. This dataset covers project-level code structure (not just line-by-line snippets), using a large context window (e.g. 16K) and a secondary fill-in-the-blank objective to encourage better contextual completions and infilling. Multiple sizes of the model are offered (e.g. 1B, 5.7B, 6.7B, 33B) so users can trade off inference cost vs capability. The repo provides model weights, documentation on training setup, evaluation results on common benchmarks (HumanEval, MultiPL-E, APPS, etc.), and inference tools.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 21
    Hunyuan3D 2.0

    Hunyuan3D 2.0

    High-Resolution 3D Assets Generation with Large Scale Diffusion Models

    The Hunyuan3D-2 model, developed by Tencent, is designed for generating high-resolution 3D assets using large-scale diffusion models. This model offers advanced capabilities for creating detailed 3D models, including texture enhancements, multi-view shape generation, and rapid inference for real-time applications. It is particularly useful for industries requiring high-quality 3D content, such as gaming, film, and virtual reality. Hunyuan3D-2 supports various enhancements and is available for deployment through tools like Blender and Hugging Face. Includes a user-friendly production/studio tool (Hunyuan3D-Studio) to manipulate/animate meshes. Condition-aligned shape generation via the DiT model, so generated mesh is influenced by input images or prompts.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 22
    Image GPT
    Image-GPT is the official research code and models from OpenAI’s paper Generative Pretraining from Pixels. The project adapts GPT-2 to the image domain, showing that the same transformer architecture can model sequences of pixels without altering its fundamental structure. It provides scripts to download pretrained checkpoints of different model sizes (small, medium, large) trained on large-scale datasets and includes utilities for handling color quantization with a 9-bit palette. Researchers can use the code to sample new images, evaluate generative loss on datasets like ImageNet or CIFAR-10, and explore the impact of scaling on performance. While the repository is archived and provided as-is, it remains a valuable starting point for experimenting with autoregressive transformers applied directly to raw pixel data. By demonstrating GPT’s flexibility across modalities, Image-GPT influenced subsequent multimodal generative research.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 23
    Transformer Debugger
    Transformer Debugger (TDB) is a research tool developed by OpenAI’s Superalignment team to investigate and interpret the behaviors of small language models. It combines automated interpretability methods with sparse autoencoders, enabling researchers to analyze how specific neurons, attention heads, and latent features contribute to a model’s outputs. TDB allows users to intervene directly in the forward pass of a model and observe how such interventions change predictions, making it possible to answer questions like why a token was selected or why an attention head focused on a certain input. It automatically identifies and explains the most influential components, highlights activation patterns, and maps relationships across circuits within the model. The tool includes both a React-based neuron viewer for exploring model components and a backend activation server for running inferences and serving data.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 24
    Qwen-Image

    Qwen-Image

    Qwen-Image is a powerful image generation foundation model

    Qwen-Image is a powerful 20-billion parameter foundation model designed for advanced image generation and precise editing, with a particular strength in complex text rendering across diverse languages, especially Chinese. Built on the MMDiT architecture, it achieves remarkable fidelity in integrating text seamlessly into images while preserving typographic details and layout coherence. The model excels not only in text rendering but also in a wide range of artistic styles, including photorealistic, impressionist, anime, and minimalist aesthetics. Qwen-Image supports sophisticated editing tasks such as style transfer, object insertion and removal, detail enhancement, and even human pose manipulation, making it suitable for both professional and casual users. It also includes advanced image understanding capabilities like object detection, semantic segmentation, depth and edge estimation, and novel view synthesis.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 25
    Stable Diffusion

    Stable Diffusion

    High-Resolution Image Synthesis with Latent Diffusion Models

    Stable Diffusion Version 2. The Stable Diffusion project, developed by Stability AI, is a cutting-edge image synthesis model that utilizes latent diffusion techniques for high-resolution image generation. It offers an advanced method of generating images based on text input, making it highly flexible for various creative applications. The repository contains pretrained models, various checkpoints, and tools to facilitate image generation tasks, such as fine-tuning and modifying the models. Stability AI's approach to image synthesis has contributed to creating detailed, scalable images while maintaining efficiency.
    Downloads: 75 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.