Showing 890 open source projects for "ai deep learning"

View related business solutions
  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 1
    AWS Deep Learning Containers

    AWS Deep Learning Containers

    A set of Docker images for training and serving models in TensorFlow

    AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep Learning Containers provide optimized environments with TensorFlow and MXNet, Nvidia CUDA (for GPU instances), and Intel MKL (for CPU instances) libraries and are available in the Amazon Elastic Container Registry (Amazon ECR). The AWS DLCs are used in Amazon SageMaker as the default vehicles for your SageMaker jobs such as training, inference...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    Deep Lake

    Deep Lake

    Data Lake for Deep Learning. Build, manage, and query datasets

    Deep Lake (formerly known as Activeloop Hub) is a data lake for deep learning applications. Our open-source dataset format is optimized for rapid streaming and querying of data while training models at scale, and it includes a simple API for creating, storing, and collaborating on AI datasets of any size. It can be deployed locally or in the cloud, and it enables you to store all of your data in one place, ranging from simple annotations to large videos. Deep Lake is used by Google, Waymo, Red...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Deep Learning Models

    Deep Learning Models

    A collection of various deep learning architectures, models, and tips

    This repository collects clear, well-documented implementations of deep learning models and training utilities written by Sebastian Raschka. The code favors readability and pedagogy: components are organized so you can trace data flow through layers, losses, optimizers, and evaluation. Examples span fundamental architectures—MLPs, CNNs, RNN/Transformers—and practical tasks like image classification or text modeling. Reproducible training scripts and configuration files make it straightforward...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    MATLAB Deep Learning Model Hub

    MATLAB Deep Learning Model Hub

    Discover pretrained models for deep learning in MATLAB

    Discover pre-trained models for deep learning in MATLAB. Pretrained image classification networks have already learned to extract powerful and informative features from natural images. Use them as a starting point to learn a new task using transfer learning. Inputs are RGB images, the output is the predicted label and score.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 5
    Deep Learning Is Nothing

    Deep Learning Is Nothing

    Deep learning concepts in an approachable style

    Deep-Learning-Is-Nothing presents deep learning concepts in an approachable, from-scratch style that demystifies the stack behind modern models. It typically begins with linear algebra, calculus, and optimization refreshers before moving to perceptrons, multilayer networks, and gradient-based training. Implementations favor small, readable examples—often NumPy first—to show how forward and backward passes work without depending solely on high-level frameworks. Once the fundamentals are clear...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    satellite-image-deep-learning

    satellite-image-deep-learning

    Resources for deep learning with satellite & aerial imagery

    This page lists resources for performing deep learning on satellite imagery. To a lesser extent classical Machine learning (e.g. random forests) are also discussed, as are classical image processing techniques. Note there is a huge volume of academic literature published on these topics, and this repository does not seek to index them all but rather list approachable resources with published code that will benefit both the research and developer communities. If you find this work useful please...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Colossal-AI

    Colossal-AI

    Making large AI models cheaper, faster and more accessible

    ..., distributed training, especially model parallelism, often requires domain expertise in computer systems and architecture. It remains a challenge for AI researchers to implement complex distributed training solutions for their models. Colossal-AI provides a collection of parallel components for you. We aim to support you to write your distributed deep learning models just like how you write your model on your laptop.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Stock prediction deep neural learning

    Stock prediction deep neural learning

    Predicting stock prices using a TensorFlow LSTM

    Predicting stock prices can be a challenging task as it often does not follow any specific pattern. However, deep neural learning can be used to identify patterns through machine learning. One of the most effective techniques for series forecasting is using LSTM (long short-term memory) networks, which are a type of recurrent neural network (RNN) capable of remembering information over a long period of time. This makes them extremely useful for predicting stock prices. Predicting stock prices...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Ludwig AI

    Ludwig AI

    Low-code framework for building custom LLMs, neural networks

    Declarative deep learning framework built for scale and efficiency. Ludwig is a low-code framework for building custom AI models like LLMs and other deep neural networks. Declarative YAML configuration file is all you need to train a state-of-the-art LLM on your data. Support for multi-task and multi-modality learning. Comprehensive config validation detects invalid parameter combinations and prevents runtime failures. Automatic batch size selection, distributed training (DDP, DeepSpeed...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 10
    AIQuant

    AIQuant

    AI-powered platform for quantitative trading

    ai_quant_trade is an AI-powered, one-stop open-source platform for quantitative trading—ranging from learning and simulation to actual trading. It consolidates stock trading knowledge, strategy examples, factor discovery, traditional rules-based strategies, various machine learning and deep learning methods, reinforcement learning, graph neural networks, high-frequency trading, C++ deployment, and Jupyter Notebook examples for practical hands-on use. Stock trading strategies: large models...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Learning Interpretability Tool

    Learning Interpretability Tool

    Interactively analyze ML models to understand their behavior

    The Learning Interpretability Tool (LIT, formerly known as the Language Interpretability Tool) is a visual, interactive ML model-understanding tool that supports text, image, and tabular data. It can be run as a standalone server, or inside of notebook environments such as Colab, Jupyter, and Google Cloud Vertex AI notebooks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Deep Java Library (DJL)

    Deep Java Library (DJL)

    An engine-agnostic deep learning framework in Java

    Deep Java Library (DJL) is an open-source, high-level, engine-agnostic Java framework for deep learning. DJL is designed to be easy to get started with and simple to use for Java developers. DJL provides native Java development experience and functions like any other regular Java library. You don't have to be a machine learning/deep learning expert to get started. You can use your existing Java expertise as an on-ramp to learn and use machine learning and deep learning. You can use your...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Google AI Edge Gallery

    Google AI Edge Gallery

    A gallery that showcases on-device ML/GenAI use cases

    Gallery is a curated collection of on-device machine learning examples, demo apps, and model artifacts designed to help developers experiment with and deploy ML at the edge. The project bundles runnable samples that show how to run TensorFlow Lite/Edge TPU models (and similar lightweight runtimes) on mobile and embedded platforms, demonstrating common tasks like image classification, object detection, audio recognition, and pose estimation. Each sample is intended to be both a learning aid...
    Downloads: 26 This Week
    Last Update:
    See Project
  • 14
    lightning AI

    lightning AI

    The most intuitive, flexible, way for researchers to build models

    Build in days not months with the most intuitive, flexible framework for building models and Lightning Apps (ie: ML workflow templates) which "glue" together your favorite ML lifecycle tools. Build models and build/publish end-to-end ML workflows that "glue" your favorite tools together. Models are “easy”, the “glue” work is hard. Lightning Apps are community-built templates that stitch together your favorite ML lifecycle tools into cohesive ML workflows that can run on your laptop or any...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 15
    Matter AI

    Matter AI

    Matter AI is open-source AI Code Reviewer Agent

    Matter AI is an AI-powered platform designed to enhance productivity through automated content generation, data analysis, and decision support. It leverages machine learning models to process text, analyze patterns, and generate insights, making it suitable for businesses looking to optimize data-driven decision-making. Matter AI integrates with various data sources and provides customizable AI workflows tailored to different industries.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 16
    AI Hedge Fund

    AI Hedge Fund

    An AI Hedge Fund Team

    This repository demonstrates how to build a simplified, automated hedge fund strategy powered by AI/ML. It integrates financial data collection, preprocessing, feature engineering, and predictive modeling to simulate decision-making in trading. The code shows workflows for pulling stock or market data, applying machine learning algorithms to forecast trends, and generating buy/sell/hold signals based on the predictions. Its structure is educational: intended more as a proof-of-concept than...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 17
    Spice.ai OSS

    Spice.ai OSS

    A self-hostable CDN for databases

    Spice is a portable runtime offering developers a unified SQL interface to materialize, accelerate, and query data from any database, data warehouse, or data lake. Spice connects, fuses, and delivers data to applications, machine-learning models, and AI backends, functioning as an application-specific, tier-optimized Database CDN. The Spice runtime, written in Rust, is built-with industry-leading technologies such as Apache DataFusion, Apache Arrow, Apache Arrow Flight, SQLite, and DuckDB...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 18
    Prem AI

    Prem AI

    Prem provides a unified environment to develop AI applications

    An intuitive desktop application designed to effortlessly deploy and self-host Open-Source AI models without exposing sensitive data to third-party. Prem provides a unified environment to develop AI applications and deploy AI models on your infrastructure. Abstracting away all technical complexities for AI deployment and ushering in a new era of privacy-centric AI applications - users can finally retain control and ownership of their models. The AI services expose an HTTP API interface...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Lepton AI

    Lepton AI

    A Pythonic framework to simplify AI service building

    A Pythonic framework to simplify AI service building. Cutting-edge AI inference and training, unmatched cloud-native experience, and top-tier GPU infrastructure. Ensure 99.9% uptime with comprehensive health checks and automatic repairs.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    TorchMetrics AI

    TorchMetrics AI

    Machine learning metrics for distributed, scalable PyTorch application

    TorchMetrics is a collection of 100+ PyTorch metrics implementations and an easy-to-use API to create custom metrics.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Generative AI for Beginners (Version 3)

    Generative AI for Beginners (Version 3)

    21 Lessons, Get Started Building with Generative AI

    ... practices and UX for AI. It also walks through modern application techniques such as function calling, RAG with vector databases, working with open source models, agents, fine-tuning, and using SLMs. Each lesson includes a short video, a written guide, runnable samples for Azure OpenAI, the GitHub Marketplace Model Catalog, and the OpenAI API, plus a “Keep Learning” section for deeper study.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    Best-of Machine Learning with Python

    Best-of Machine Learning with Python

    A ranked list of awesome machine learning Python libraries

    This curated list contains 900 awesome open-source projects with a total of 3.3M stars grouped into 34 categories. All projects are ranked by a project-quality score, which is calculated based on various metrics automatically collected from GitHub and different package managers. If you like to add or update projects, feel free to open an issue, submit a pull request, or directly edit the projects.yaml. Contributions are very welcome! General-purpose machine learning and deep learning frameworks.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 24
    AI Upscaler for Blender

    AI Upscaler for Blender

    AI Upscaler for Blender using Real-ESRGAN

    ... on the CPU. Blender renders a low-resolution image. The Real-ESRGAN Upscaler upscales the low-resolution image to a higher-resolution image. Real-ESRGAN is a deep learning upscaler that uses neural networks to achieve excellent results by adding in detail when it upscales.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25
    Synapse Machine Learning

    Synapse Machine Learning

    Simple and distributed Machine Learning

    SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. SynapseML builds on Apache Spark and SparkML to enable new kinds of machine learning, analytics, and model deployment workflows. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with the Open Neural Network Exchange (ONNX), LightGBM, The Cognitive Services, Vowpal Wabbit...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.